Internet of Production (IoP)
The Internet – in its meaning of a worldwide socio-technical network – has revolutionized accessibility of data and knowledge. This idea has been transferred to the physical world with the concept of the Internet of Things (IoT). A direct application of the IoT approach to production is currently not sufficiently feasible. There are many more parameters but much less available data than other big data application domains. Vast amounts of data characterize modern production. However, this data is neither easily accessible, interpretable, nor connected to gain knowledge. With the Internet of Production (IoP), we have the vision to enable a new level of cross-domain collaboration by providing semantically adequate and context-aware data from production, development, and usage in real-time on an appropriate level of granularity. The central scientific approach is the introduction of Digital Twins and Digital Shadows. The Cluster of Excellence designs and implements a conceptual reference infrastructure for the Internet of Production that enables the generation and application of Digital Shadows. The vision of IoP is to enable a new level of cross-domain collaboration by providing semantically adequate and context-aware data from production, development, and usage in real-time, on an adequate level of granularity.
Selected Publications:
-
[KJM+24] I. Koren, M. Jarke, J. Michael, M. Heithoff, L. Tacke Genannt Unterberg, M. Stachon, B. Rumpe, W. M. P. van der Aalst: Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration. In: Enterprise, Business-Process and Information Systems Modeling, H. van der Aa, D. Bork, R. Schmidt, A. Sturm (Eds.), pp. 275–290, Springer Nature Switzerland, May 2024.
-
[MKD+23] J. Michael, I. Koren, I. Dimitriadis, J. Fulterer, A. Gannouni, M. Heithoff, A. Hermann, K. Hornberg, M. Kröger, P. Sapel, N. Schäfer, J. Theissen-Lipp, S. Decker, C. Hopmann, M. Jarke, B. Rumpe, R. H. Schmitt, G. Schuh: A Digital Shadow Reference Model for Worldwide Production Labs. In: Internet of Production: Fundamentals, Applications and Proceedings, C. Brecher, G. Schuh, W. van der Aalst, M. Jarke, F. T. Piller, M. Padberg (Eds.), pp. 1–28, Springer, Jun. 2023.
-
[DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, S. Varga, A. Wortmann: Generating Customized Low-Code Development Platforms for Digital Twins. In: Journal of Computer Languages (COLA), Volume 70, Art. 101117, Elsevier, Jun. 2022.
-
[BHK+21] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe, M.S. Uysal, W. M. P. van der Aalst, A. Wortmann: Process Prediction with Digital Twins. Models@runtime’21 (MODELS’21)
-
[BBD+21] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C. Hopmann, M. Jarke, I. Koren, M. Kröger, J. Lipp, J. Maibaum, J. Michael, B. Rumpe, P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh, and A. Wortmann: A conceptual model for digital shadows in industry and its application. In: Ghose, A. and Horkoff, J. and Silva Souza, V.E. and Parsons, J. and Evermann J. (eds), Conceptual Modeling. ER 2021, LNCS 13011, pages 271-281, October, 2021, Springer.
-
[DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits. In: G. Dobbie, U. Frank, G. Kappel, S. Liddle, H. Mayr, editors, Conceptual Modeling, pp. 377-387, Springer, Oct. 2020.
-
[DJM+19] M. Dalibor, N. Jansen, J. Michael, B. Rumpe, A. Wortmann: Towards Sustainable Systems Engineering – Integrating Tools via Component and Connector Architectures In: G. Jacobs, J. Marheineke, editors, Antriebstechnisches Kolloquium 2019: Tagungsband zur Konferenz, pp. 121-133, Feb. 2019.