Compositional Engineering of DSLs
for Assistive Systems

LangDev Meetup 2023
] . Based on: [HJK+23] M. Heithoff, N. Jansen, J. C. Kirchhof, J. Michael, F. Rademacher, B.
Judith Michael, Bernhard Rumpe Rumpe: Deriving Integrated Multi-Viewpoint Modeling Languages from Heterogeneous
i i Modeling Languages: An Experience Report. In: 16th ACM SIGPLAN Int. Conf. on Software
Software Engmeermg Language Engineering (SLE 2023), ACM, 2023. https://doi.org/10.1145/3623476.3623527
RWTH Aachen

14.11.2023, Utrecht, NL

http://www.se-rwth.de SE - %%%%%ﬂ

Why is language composition an interesting topic?

* Increasing complexity of the world * Increasing number of DSLs
+ Use DSLs to handle complexity as software engineers « Research perspective
— Different perspectives and viewpoints — foster reuse to increase quality and productivity

Personal
Vehicle

— * %_fhutﬂe

Shuttle R

Energy Systems Production Systems Transport Systems

Research Question: How to integrate different modeling languages via established language composition techniques?
Special Focus: Assistive Systems

2 Software Engineering | RWTH Aachen S
Software
Engineering

MontiCore Language Workbench

Easy and fast engineering of DSLs

S

— define context-free grammars Language reads | .| Code Generator
— supports language composition Grammar mm Infrastructure
and reuse A e provides
— variability in syntax, context ! ﬁm . Runtime
conditions, generation, semantics Model) Environment
N
« Definition of modular language e | generates uses
fragments v .
— interfaces between models and ABSTRACT SYNTAX erates.on
language fragments < P
Parser . Model 5! Svmbol Table N
_ Infrastructure | instantiates l’ AST y
« Support for analysis) CoCos
 Support for transformations T "
 Pretty printing, editors Visitor g uses
GENERATED Infrastructure
. J
3 Software Engineering | RWTH Aachen MH

Software
Engineering

Assist Language Family | Overview

* Aim
— simplify the development of assistive systems

Assistive Systems

— provide human behavior support, e.g., manual
assembly in production, driving, activities of daily life

— stress, new situations, age-related

MDE of assistive systems
— use MontiGem generator to develop web-
applications

Language Family
— domain model, GUI-DSL, OCL
for generation

— context language for objects natural language
— task language for processes based

4 Software Engineering | RWTH Aachen S
Software
Engineering

System Architecture

MontiGem
Generator Framework
— Input: Domain and GUI models, opt. OCL and 9
tagging models)
— Generates DB, Backend, Frontend, Communication User
Infrastructure v \
= k- - =
— Allow for adding hand-written code & Interactionand 1) =
. . Task Context Presentation <+ Gul
continuous re-generation Model || Model -) generate| | o° |
N
» Models at runtime Reasoning » Support
— Context Model 5 =
= define concrete objects to be used in processes 1 v v - ol
— Task Model DataToModel | _ Storage Manager 9ENETEE] Model
= describe the processes to be supported Transformer
A
S
v
=
w Storage
= S
5 Software Engineering | RWTH Aachen

S Software
Engineering

Context Modeling Language | Example Machines

Machi (Functional Components
1| Machines
2 Stove { \/ l \
3 pl: The Plate is equippable (17, 17), can cook, can fry
4 bl: The Button modifies stepwise (0, 9, 1) controls pl
5/ }
AT t 1 t
ID Name & Article Rel. Pos. Functional Component Controlled
Machine Part

6 Software Engineering | RWTH Aachen | ‘
‘ ~ Software
il 1 Engineering

Task Modeling Language | Describing human behavior

1 | Task Pasta_with_Vegetable Sauce:

2

3 Pot: Find fillable(3 L), can cook

4 Find water € 1. Finding Ingredients / Utensils in Storages
5 Find tea spoon, salt

6

7| Platel: Place Pot onto Stove <€ 2. Placing Utensils onto Machines
8

9 Fill Pot with 3 L water, 3 TL salt «—— 3. Filling Utensils with Ingredients
10

11 Set Platel to full

12 <€ 4. Operating Machines

13 Set Platel to 6

14

15 “Drain the pasta.” £ 5. Guided Actions

7 Software Engineering | RWTH Aachen
Software
Engineering

Generated Information Presentation | Operate, Find, Place, Fill, Guided

Bedienen Sie den Herd Operate the stove
Stellen SW Set the 3rd knob from the right to level 9 (max).
K\ Find the pan
—s Image

The pan is on the right side of the stove, in the
drawer cabinet, in the bottom drawer

Finden Sie die Pfanne \/‘

Die Pfanne ist rechts von dem Herd, in dem Schubladenschrank, in der untersten Schublade.

presentation

P 004/00) m—)

<- Vorherige Aufgabe Ubersicht umschalten Nachste Aufgabe >
PP Audio
Navigation:

/_\ Il 00/ 006
Previous and next task presentation

8 Software Engineering | RWTH Aachen S
Software
% Engineering

Modeling and Generated Information Presentation

« Reasoning in the backend to navigate user to find fitting objects

» Presentation for each task type (Find, Fill, Place, Operate, (Guided)) Nested Layout
— Text, Image and Audio Order: Reference, Composite, Leaf
1| Find fillable(3 L), can cook / [
Finden Sie den Topf

\ Der Topf ist links von dem Herd, in dem Schubladenschrank, in der untersten Schublade.
Storages {

The drawer cabinet left of the stove {

s3: The drawer 1. from below

}

Utensils { é,//”’/"—_——‘\\\\\\

Potl: 1x the pot(15,10) in s3, Picture
is fillable(5 L, 15, 10), can cook ™\

P 006/006 =—) i

O 0 N O U1 D W N B
-

10 Pot2: 1x the pot in s2,
12 | }

9 Software Engineering | RWTH Aachen S
Software
Engineering

Assist Language Family | Languages and Components

MCL
Assist Languages Project
—>| Article
I =) TaskLanguage v2 =) BPMN &=
ContextLanguage T
guage 55 > Direction E=) |
] unit =) TaskLanguage =) GUI Project
W GUI-DSLv1 8=
MontiCore Project Sl Units Project OCL Frojoct | knows
MCJavaliterals £=) sinit 3| <5 | [g, =
MCBasics =)< | CD4A Project
; k | |
| B CD4Analysis 5=)<-
i knows ~
10 Software Engineering | RWTH Aachen MH

Software
Engineering

MontiCore | Three “Layers” of Languages

Base Layer:

MCBasics Expressions Statements Cardinality S| Units
Components

MCCommon Literals Types Completeness

11 Software Engineering | RWTH Aachen
Software
Engineering

Feature Diagram for MontiCore Language Components

« MontiCore provides a set of language components that can be used as features

— Some dependencies exist, e.g. certain expressions rely on appropriate literals

MCBasic Basic Expression MClLiterals
Types SymbOIS Basis
MCCollection MCArray SIUnitTypes RegEx (0]0) Common Assignment BitExp SetExp MCCommon
Types Types 4Math Types Symbols Exp. Exp. | : Literals
l l 3 i
MCSimple SlUnitTypes JavaClass MCJava
GenericTypes 4Computing Exp. Literals
MCFull Legend:
GenericTypes — O optional feature

Grammars for these languages can be found at: https://monticore.qgithub.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

[BEH+20] A. Butting, R. Eikermann, K. Hélldobler, N. Jansen, B. Rumpe, A. Wortmann: A Library of Literals, Expressions, Types, and Statements for Compositional Language Design. JOT 19 (3), 2020.

12 Software Engineering | RWTH Aachen

S

Software
Engineering

MontiCore | Three “Layers” of Languages

Layer 2:
Focused
Languages

Base Layer:
Components

Class D.
=) Sequence D. T:FH Neuronal MCJava JSON
XML ANNA

JavaLight Statecharts
‘Object D. OCL Feature D.]%[
| C, C++, Python E

MCBasics Expressions Statements Cardinality S| Units

MCCommon Literals Types Completeness

13 Software Engineering | RWTH Aachen
Software
Engineering

RWTH

MontiCore | Three “Layers” of Languages

Layer 3:
“Multi-Viewpoint” Ug— SpesML SysML MontiGem MontiThings
UNIFIED MG \%
Languages =\f, MontiArc P Ontologyl.ang
gL BPMN Assist CAD/M
Layer 2: Class D
Focused ' ﬁ% Sequence D. TI{%E Neuronal MCJava JSON
Languages XML ANNA Statochart
JavalLight atecharts
‘Object D. OCL Feature D'D%\D %}—}?
+ C, C++, Python
Base Layer: MCBasics Expressions Statements Cardinalit S| Units
Components y
MCCommon Literals Types Completeness

14 Software Engineering | RWTH Aachen

RWTH

S Software
Engineering

MontiCore | Three “Layers” of Languages

Layer 3:
“Multi-Viewpoint” UML SpesML SysML MontiGem MontiThings
UNIFIED MG \%
Languages = °|, MontiArc P OntologylLang
BPMN i CAD/M
Assist
Layer 2: Class D
Focused ' ﬁ% Sequence D. TI{%E Neuronal MCJava JSON
Languages XML ANNA Statechart
JavaLight atecharts
‘Object D. OCL Feature D'D/%\D c'i}—?
+ C, C++, Python
CB)?)rswfplc_)?;enrt:s MCBasics Expressions Statements Cardinality S| Units
MCCommon Literals Types Completeness
15 Software Engineering | RWTH Aachen RW‘I‘H

S Software
Engineering

Language Composition Mechanisms

Language Inheritance

» Use original language
— remains unchanged

* New DSL

extends

— adopt and extend or modify concepts

L2

— concrete and abstract syntax, generated
tooling and hand-written extensions

Language Extension

Use original language

— remains unchanged

New DSL

— new elements can be added

— existing elements can be modified only in an extending
but non-restricting way

— valid models of the original language still remain valid

0l |grammar Entities extends MCBasics, MCBasicTypes { 01 |grammar CD4Code extends MCBasics, MCBasicTypes {
02 start CDCompilationUnit; 02 start CDCompilationUnit;
03 03
04 @Override 04 @Override
05 symbol scope CDClass implements CDElement = 05 symbol scope CDClass implements CDElement =
06| “entity" Name " {" 06 "class" Name "{"
07 CDAttribute* 07 (CDAttribute CDMethod) *
08 " 08 "y
09]... 09
10 symbol CDMethod implements CDMember =
11 MCType Name " (" Args ")" ";";
12..
16 Software Engineering | RWTH Aachen RW‘I‘H

S Software
Engineering

Language Composition Mechanisms

L2

Language Embedding L1

* integrate multiple DSLs A

— combining their production '
rules in a single grammar o

— enabling integrated modeling L3

7

7

/
extendsi /embeds
/7

0l |grammar MealyAutomata extends Automata,

02 CommonExpressions {
03

Language Aggregation L1 L2
» integrate models of multiple DSLs A
— keep them as separate artifacts /aggregates
- loose coupling of DSL definitions i
— symbol table infrastructure allows L3
for cross-referencing
01]. Aut

02 [automaton PingPong {

03 state NoGame <<initial>> <<final>>;
04 state Ping;

05 state Pong;

04 MealyAutomaton = MCImportStatement* Automaton; 06 e) .
05 07 Pong - missBall / pl points+=strokes > NoGame;
06 @Override 08|} }
07 Transition = : f -
08 from:Name "-" input:Expression "/" 01 classd:.agram. games {
09 output:Expression ">" to:Name ";" ; 02 cléss Tennis { . .
10|y 03 int strokes; variable symbols of CD in
04 int pl points; the context of a PingPong
05 int p2 points; game automaton
06 }
0711
17 Software Engineering | RWTH Aachen

Software
Engineering

S

Scenarios | Overview

Scenario / Use Case mm Embedding | Aggregation

(S1) Modifying a language, tailoring it to a suitable partially X
specific use case

(S2) Extending a language to a use case while partially suitable X X
maintaining the integrity of the original models

(S3) Combining multiple language components X X suitable X

into a modeling language

(S4) Combining modeling languages into a X X suitable suitable
language family

(S5) Constructing huge languages with different x X suitable suitable
constituents

(S6) Constructing a language or language family x X partially suitable

with heterogeneous parts for interdisciplinary use
(S7) Modularization of model artifacts X X X suitable

RWTH

18 Software Engineering | RWTH Aachen
Software
Engineering

Assist Language Family | Languages and Components

Assist Languages Project

sS4

_l>

ContextLanguage =)

Article

=)

_|>

Direction 5=

S3

_l>

Unit

=)

S7

!
S2

TaskLanguage v2 £=)

|
s4

TaskLanguage =)

MontiCore Project

3)| | MCJavalLiterals 5=

MCBasics

=<

S2

Sl Units Project

Siunit == K<

MCL
BPMN &=
GUI Project
S3 S4
GUI-DSLv1 =)+
knows

-l ocL =

OCL Project
S3

CDA4A Project s

3
CD4Analysis %E—’<

v

Legend

S1 | Modify DSL

S2 | Extending DSL
S3 | L. Components
S4 | DSLs in Family
S5 | Huge Languages

S6 | Heterogenous parts

S7 | Modularization

Software Engineering | RWTH Aachen

S Software
Engineering

Scenarios for one DSL & Language Components

S1 | Modifying a language, tailoring it to a use case
— creating a new DSL and use an existing one as a

base language

— Suitable: Inheritance

= e.g., no former models, new tooling
— Partially suitable: Extension

= e.g., reuse tooling

S2 | Extending a language to a use case while

maintaining the integrity of the original models
— reuse existing models

— Suitable: Extension
= e.g., ensure to keep modifications genuinely
conservative (warnings)
= Assist Language, e.qg., Sl Units

S3 | Combining multiple lang. components into a DSL
— having reusable language components
— could be incomplete language components

— Suitable: Embedding

effective when integrated DSLs share common
interfaces

no glue code necessary

developers need to be knowledgeable about the
existing components

Assist Language, e.q., MCBasics, MCJavaliterals

— Not suitable: Aggregation

Loose coupling
would not complete components into a fully functional
DSL

20 Software Engineering | RWTH Aachen

RWTH

S Software
Engineering

Scenarios for more than one DSL

S4 | Combine DSLs into a language family
— already functional languages

— Suitable: Embedding, Aggregation
= integrated views or separate artifacts
= Assist Language, e.q., Context, Task Language, CD4A

S5 | Construct huge DSLs with different constituents
— already functional languages
— aim: support organization and structuring of
larger modeling projects

— Suitable: Embedding, Aggregation
= integrated views or separate artifacts

S6 | Constructing a language or language family with
heterogeneous parts for interdisciplinary use
— interdisciplinary teams
— artifacts represent different domain-specific views on a
system

— Suitable: Aggregation
= enable domain expert views without getting distracted
by information of other perspectives

— Partially suitable: Embedding

S7 | Modularization of model artifacts
— separation of concerns &
— create a suitable modeling project structure

— Suitable: Aggregation

21 Software Engineering | RWTH Aachen

RWTH

S

Software
Engineering

Assist Language Family | Languages and Components

MCL
Assist Languages Project
—>| Article
I =) TaskLanguage v2 =) BPMN &=
ContextLanguage T
guage 55 > Direction E=) |
] unit =) TaskLanguage =) GUI Project
W GUI-DSLv1 8=
MontiCore Project Sl Units Project OCL Frojoct | knows
MCJavaliterals £=) sinit 3| <5 | [g, =
MCBasics =)< | CD4A Project
; k | |
| B CD4Analysis 5=)<-
i knows ~
22 Software Engineering | RWTH Aachen MH

Software
Engineering

Summary and Discussion

Capturing complex systems requires
different techniques for composing DSLs

Deriving Integrated Multi-Viewpoint Modeling

Languages from Heterogeneous Modeling Languages: For th e CompOSItlon Of Ianguage families’

An Experience Report

e, ke, Rose embedding and aggregation are needed

Software Engineering, RWTH Aschen Software Engmeeriog, awmu.nm wnm:,.p... ving, RWTH Aschen
Uneversty Uneversaty Uneversity

Gevmany CGermany Cermany
Judith Michael Florian Rademacher Bernhard Rumpe
michaelgie rwth de rademacheriase rwth de rumpegaae rwth de

Germany Germany Germany

Abstract Keywords: h\ﬂmhlwhpmq_hmum-
In modern sysirms engineering, domain cxperts increas PoRbon, Doman-Specthc Langusges, Laiguage Fales,
ingly utilize models 10 dcfine domain specific viewpoints Juwuse, [ternet of Things, Asstive Systens
in a highly interfisciplinary context annrmnudn:ﬂr A Refeeace Format

oo jansen |

pely heterogeacont] nhard Rure. 7% Deriving 8- . .
#till poses & challenge. Until now, composition in practice Wiirated Multh Varwpuoint Mesteling [anguagies froem 1eteroge.
o e Dot ...more details in the aper
[panents of applying language composition in smaller sce- S A AUAELAN Siwenlions’ Cytais om At wanr

Languape Fagiscerieg (SL2 25) October 23 3¢ 3021, Cocate Ports
parios, whie The pplicalon 1o e, BACROBEIOONS 1ol e Yok Y, A, 1 g, e kg 10 145

E o i and following publications

beterogencous application areas such &s assistive sysems

and cyber.physical systems in the Infernet of Things. We SOMWare d systesns cngiowering faces an incressing level
apply state of the-art practices, show theis reakzation, and

of thve worhd Using s proven 1o be 5

dcms bl approach o e i complenty 1] T
~ F it s complenty [se]. To creste
26 . ¥ m'"!'ww"" models of reabity for domatns such 33 productson [10, 2]

- 716 be used i, €. -
k_hw_" y Sslomotive (7). and meduine (7
M"“’":_"Imd"“““ - ital twins [36], for explasnable cybes-pliymcal vyﬂﬂn)l .
LS Comenpts: - Software and its engineering — Model- range of perspectives and viewpeoials. This requiremeat

entails adkdreang 1 peoperties of systems for the
ok e o i e diverse disaphnes smvolved mn an scorssible (ashon.
Avricen we it foe prded that copirs %
s e i el e gusmei g s O PP 1 ssatng thoe sy s of puthonbec

ok e of th. wanh et by oehers aan the autborts) aid Spredfic Lamguages (DSLa). Although such DSLs can be ear-
T Anmrd Alsiractng with ool & prmsied. o py wherwae, w ployed simultaneously for different wse cases, in practice.
bl - e

Languages for

e e o g s g P oy o ey SLE Language Composition .
prsder g s i ppan-J ey Assistive Systems

issue. researchers have proposed various techniques. such

Paper

se-rwth.de/publications

Preprint

23 Software Engineering | RWTH Aachen
Software
Engineering

