
Compositional Engineering of DSLs
for Assistive Systems

LangDev Meetup 2023

14.11.2023, Utrecht, NL

Judith Michael, Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de

Based on: [HJK+23] M. Heithoff, N. Jansen, J. C. Kirchhof, J. Michael, F. Rademacher, B.
Rumpe: Deriving Integrated Multi-Viewpoint Modeling Languages from Heterogeneous
Modeling Languages: An Experience Report. In: 16th ACM SIGPLAN Int. Conf. on Software
Language Engineering (SLE 2023), ACM, 2023. https://doi.org/10.1145/3623476.3623527

Software Engineering | RWTH Aachen2

• Increasing complexity of the world
• Use DSLs to handle complexity as software engineers
 Different perspectives and viewpoints

• Increasing number of DSLs
• Research perspective
 foster reuse to increase quality and productivity

Why is language composition an interesting topic?

Personal
Vehicle

Taxi

Shuttle

Shuttle

Cargo

Energy Systems Production Systems Transport Systems

Research Question: How to integrate different modeling languages via established language composition techniques?
Special Focus: Assistive Systems

Software Engineering | RWTH Aachen3

• Easy and fast engineering of DSLs
 define context-free grammars
 supports language composition

and reuse
 variability in syntax, context

conditions, generation, semantics

• Definition of modular language
fragments
 interfaces between models and

language fragments

• Support for analysis
• Support for transformations
• Pretty printing, editors

MontiCore Language Workbench

Model

Language
Grammar

Parser
Infrastructure

Model
AST

Visitor
Infrastructure

Symbol Table

Runtime
Environment

Code Generator
Infrastructure

generates

instantiates

traverses

reads

conforms to

reads

GENERATED

provides

uses

ABSTRACT SYNTAX

CoCos

operates on

uses

Software Engineering | RWTH Aachen4

• Aim
 simplify the development of assistive systems

• Assistive Systems
 provide human behavior support, e.g., manual

assembly in production, driving, activities of daily life
 stress, new situations, age-related

• MDE of assistive systems
 use MontiGem generator to develop web-

applications

• Language Family
 domain model, GUI-DSL, OCL

for generation

 context language for objects
 task language for processes

Assist Language Family | Overview

natural language
based

Software Engineering | RWTH Aachen5

MontiGem
Generator Framework

 Input: Domain and GUI models, opt. OCL and
tagging models

 Generates DB, Backend, Frontend, Communication
Infrastructure

 Allow for adding hand-written code &
continuous re-generation

• Models at runtime
 Context Model

 define concrete objects to be used in processes
 Task Model

 describe the processes to be supported

System Architecture

Storage Manager

Reasoning Support

User

Interaction and
Presentation

Storage

DataToModel
Transformer

generate

generate

GUI
Model

Domain
Model

Task
Model

Context
Model

Software Engineering | RWTH Aachen6

Context Modeling Language | Example Machines

Machines {
Stove {

p1: The Plate back left is equippable (17, 17), can cook, can fry
b1: The Button 3. from right modifies stepwise (0, 9, 1) controls p1

}
}

Functional Components

Name & Article Rel. Pos. Functional Component Controlled
Machine Part

ID

1
2
3
4
5
6

Context

Software Engineering | RWTH Aachen7

Task Modeling Language | Describing human behavior

1. Finding Ingredients / Utensils in Storages

Task Pasta_with_Vegetable_Sauce:

Pot: Find fillable(3 L), can cook
Find water
Find tea spoon, salt

Plate1: Place Pot onto Stove

Fill Pot with 3 L water, 3 TL salt

Set Plate1 to full
…
Set Plate1 to 6

“Drain the pasta.”

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2. Placing Utensils onto Machines

3. Filling Utensils with Ingredients

4. Operating Machines

5. Guided Actions

Task

Software Engineering | RWTH Aachen8

Image
presentation

Operate the stove
Set the 3rd knob from the right to level 9 (max).

Audio
presentation

Navigation:
Previous and next task
Overview

Find the pan
The pan is on the right side of the stove, in the
drawer cabinet, in the bottom drawer

Generated Information Presentation | Operate, Find, Place, Fill, Guided

Software Engineering | RWTH Aachen9

• Reasoning in the backend to navigate user to find fitting objects

• Presentation for each task type (Find, Fill, Place, Operate, (Guided))
 Text, Image and Audio

Modeling and Generated Information Presentation

Storages {
The drawer cabinet left of the stove {

…
s3: The drawer 1. from below

}
}
Utensils {

Pot1: 1x the pot(15,10) in s3,
is fillable(5 L, 15, 10), can cook

Pot2: 1x the pot in s2,
is fillable(2 L, 5, 5)

}

Context

Find fillable(3 L), can cook Task

Nested Layout
Order: Reference, Composite, Leaf

Picture

1
2
3
4
5
6
7
8
9
10
11
12

1

Software Engineering | RWTH Aachen10

Workflow Project
Assist Languages Project

CD4A Project

SI Units ProjectMontiCore Project

MCBasics

MCJavaLiterals

Article

Unit

Direction
ContextLanguage

SIUnit

TaskLanguage

TaskLanguage v2 BPMN

GUI Project

GUI-DSL v1

CD4Analysis

OCL Project

OCL

knows

knows

Assist Language Family | Languages and Components

knows

MCL

Software Engineering | RWTH Aachen11

MontiCore | Three “Layers” of Languages

Base Layer:
Components

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

SI Units

Software Engineering | RWTH Aachen12

• MontiCore provides a set of language components that can be used as features
 Some dependencies exist, e.g. certain expressions rely on appropriate literals

Feature Diagram for MontiCore Language Components

Legend:

optional feature

Grammars for these languages can be found at: https://monticore.github.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

MCLiterals
Basis

MCCommon
Literals

MCJava
Literals

Expression
Basis

Assignment
Exp.

Common
Exp.

SetExp.

JavaClass
Exp.

BitExp.

Basic
Symbols

OO
Symbols

MCBasic
Types

MCCollection
Types

MCSimple
GenericTypes

MCFull
GenericTypes

MCArray
Types

SIUnitTypes
4Math

SIUnitTypes
4Computing

RegEx
Types

[BEH+20] A. Butting, R. Eikermann, K. Hölldobler, N. Jansen, B. Rumpe, A. Wortmann: A Library of Literals, Expressions, Types, and Statements for Compositional Language Design. JOT 19 (3), 2020.

FD

Software Engineering | RWTH Aachen13

MontiCore | Three “Layers” of Languages

Base Layer:
Components

Layer 2:
Focused
Languages

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

SI Units

JavaLight
XML

MCJava JSONSequence D.
Class D.

Object D. OCL Feature D.

Neuronal
ANNA

C, C++, Python

Statecharts

__:
__:

__:

Software Engineering | RWTH Aachen14

MontiCore | Three “Layers” of Languages

Base Layer:
Components

Layer 2:
Focused
Languages

Layer 3:
“Multi-Viewpoint”
Languages

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

SI Units

JavaLight
XML

MCJava JSONSequence D.
Class D.

Object D. OCL Feature D.

Neuronal
ANNA

C, C++, Python

MontiGemUML

BPMN CAD/M

OntologyLang

SysML

MontiArc

SpesML MontiThings

Statecharts

Assist

__:
__:

__:

Software Engineering | RWTH Aachen15

MontiCore | Three “Layers” of Languages

Base Layer:
Components

Layer 2:
Focused
Languages

Layer 3:
“Multi-Viewpoint”
Languages

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

SI Units

JavaLight
XML

MCJava JSONSequence D.
Class D.

Object D. OCL Feature D.

Neuronal
ANNA

C, C++, Python

MontiGemUML

BPMN CAD/M

OntologyLang

SysML

MontiArc

SpesML MontiThings

Statecharts

Assist

__:
__:

__:

Software Engineering | RWTH Aachen16

Language Extension
• Use original language
 remains unchanged

• New DSL
 new elements can be added
 existing elements can be modified only in an extending

but non-restricting way
 valid models of the original language still remain valid

Language Composition Mechanisms

Language Inheritance
• Use original language
 remains unchanged

• New DSL
 adopt and extend or modify concepts
 concrete and abstract syntax, generated

tooling and hand-written extensions

extends

L2

L1

grammar Entities extends MCBasics, MCBasicTypes {
start CDCompilationUnit;

@Override
symbol scope CDClass implements CDElement =

“entity" Name "{"
CDAttribute*

"}";
…

01
02
03
04
05
06
07
08
09

MG grammar CD4Code extends MCBasics, MCBasicTypes {
start CDCompilationUnit;

@Override
symbol scope CDClass implements CDElement =

"class" Name "{"
(CDAttribute CDMethod)*

"}" ;

symbol CDMethod implements CDMember =
MCType Name "(" Args ")" ";";

…

01
02
03
04
05
06
07
08
09
10
11
12

MG

Software Engineering | RWTH Aachen17

Language Aggregation
• integrate models of multiple DSLs
 keep them as separate artifacts

• loose coupling of DSL definitions
 symbol table infrastructure allows

for cross-referencing

Language Composition Mechanisms

Language Embedding
• integrate multiple DSLs
 combining their production

rules in a single grammar
 enabling integrated modeling

aggregates

L3

L1 L2

embeds

L3

L1 L2

extends

grammar MealyAutomata extends Automata,
CommonExpressions {

MealyAutomaton = MCImportStatement* Automaton;

@Override
Transition =

from:Name "-" input:Expression "/"
output:Expression ">" to:Name ";" ;

}

01
02
03
04
05
06
07
08
09
10

MG

…
automaton PingPong {

state NoGame <<initial>> <<final>>;
state Ping;
state Pong;
…
Pong – missBall / p1_points+=strokes > NoGame;

}

01
02
03
04
05
06
07
08

Aut

classdiagram games {
class Tennis {

int strokes;
int p1_points;
int p2_points;

}
}

01
02
03
04
05
06
07

CD

variable symbols of CD in
the context of a PingPong

game automaton

Software Engineering | RWTH Aachen18

Scenario / Use Case Inheritance Extension Embedding Aggregation

(S1) Modifying a language, tailoring it to a
specific use case

suitable partially x x

(S2) Extending a language to a use case while
maintaining the integrity of the original models

partially suitable x x

(S3) Combining multiple language components
into a modeling language

x x suitable x

(S4) Combining modeling languages into a
language family

x x suitable suitable

(S5) Constructing huge languages with different
constituents

x x suitable suitable

(S6) Constructing a language or language family
with heterogeneous parts for interdisciplinary use

x x partially suitable

(S7) Modularization of model artifacts x x x suitable

Scenarios | Overview

Software Engineering | RWTH Aachen19

Workflow Project
Assist Languages Project

CD4A Project

SI Units ProjectMontiCore Project

MCBasics

MCJavaLiterals

Article

Unit

Direction
ContextLanguage

SIUnit

TaskLanguage

TaskLanguage v2 BPMN

GUI Project

GUI-DSL v1

CD4Analysis

OCL Project

OCL

knows

knows

Assist Language Family | Languages and Components

knows

MCL

S2

S3

S2

S3
Legend
S1 | Modify DSL
S2 | Extending DSL
S3 | L. Components
S4 | DSLs in Family
S5 | Huge Languages
S6 | Heterogenous parts
S7 | Modularization

S4

S4

S3

S3

S3

S4

S7

S6

S3

S4

Software Engineering | RWTH Aachen20

S3 | Combining multiple lang. components into a DSL
 having reusable language components
 could be incomplete language components

 Suitable: Embedding
 effective when integrated DSLs share common

interfaces
 no glue code necessary
 developers need to be knowledgeable about the

existing components
 Assist Language, e.g., MCBasics, MCJavaLiterals

 Not suitable: Aggregation
 Loose coupling
 would not complete components into a fully functional

DSL

Scenarios for one DSL & Language Components

S1 | Modifying a language, tailoring it to a use case
 creating a new DSL and use an existing one as a

base language

 Suitable: Inheritance
 e.g., no former models, new tooling

 Partially suitable: Extension
 e.g., reuse tooling

S2 | Extending a language to a use case while
maintaining the integrity of the original models
 reuse existing models

 Suitable: Extension
 e.g., ensure to keep modifications genuinely

conservative (warnings)
 Assist Language, e.g., SI Units

Software Engineering | RWTH Aachen21

S6 | Constructing a language or language family with
heterogeneous parts for interdisciplinary use
 interdisciplinary teams
 artifacts represent different domain-specific views on a

system

 Suitable: Aggregation
 enable domain expert views without getting distracted

by information of other perspectives

 Partially suitable: Embedding

S7 | Modularization of model artifacts
 separation of concerns &
 create a suitable modeling project structure

 Suitable: Aggregation

Scenarios for more than one DSL

S4 | Combine DSLs into a language family
 already functional languages

 Suitable: Embedding, Aggregation
 integrated views or separate artifacts
 Assist Language, e.g., Context, Task Language, CD4A

S5 | Construct huge DSLs with different constituents
 already functional languages
 aim: support organization and structuring of

larger modeling projects

 Suitable: Embedding, Aggregation
 integrated views or separate artifacts

Software Engineering | RWTH Aachen22

Workflow Project
Assist Languages Project

CD4A Project

SI Units ProjectMontiCore Project

MCBasics

MCJavaLiterals

Article

Unit

Direction
ContextLanguage

SIUnit

TaskLanguage

TaskLanguage v2 BPMN

GUI Project

GUI-DSL v1

CD4Analysis

OCL Project

OCL

knows

knows

Assist Language Family | Languages and Components

knows

MCL

Software Engineering | RWTH Aachen23

Capturing complex systems requires
different techniques for composing DSLs

For the composition of language families,
embedding and aggregation are needed

…more details in the SLE paper
and following publications

Summary and Discussion

Preprint
Languages for

Assistive Systems

I

Paper
SLE Language Composition

se-rwth.de/publications

