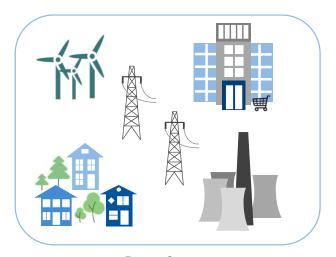
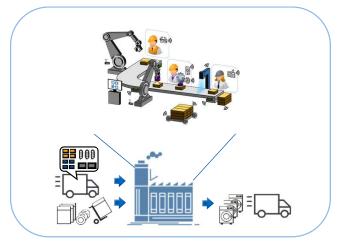


Enabling Informed Sustainability Decisions: Sustainability Assessment in Iterative System Modeling

16th Int. Workshop on Models and Evolution (ME'23)

Gabriele Gramelsberger, Hendrik Kausch, <u>Judith Michael</u>, Frank Piller, Ferdinanda Ponci, Aaron Praktiknjo, Bernhard Rumpe, Rega Sota, Sandra Venghaus




03.10.2023, Västerås, Sweden

Motivation

- Planning, creating, evolving systems
 - Cyber-physical systems
 - Technical systems
 - Socio-technical systems

- Assess their impact
 - Social, economic, environmental
 - Lack connections to SDGs

Energy Systems

Production Systems

Transport Systems

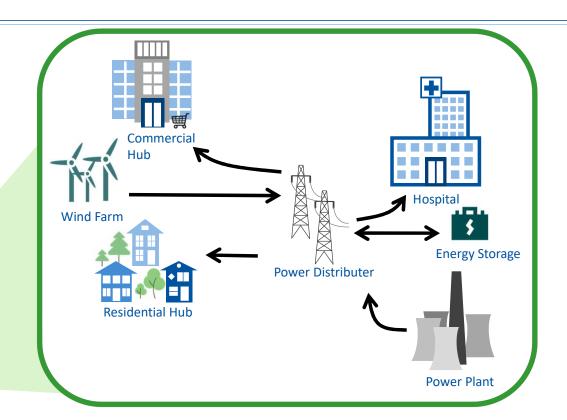
Towards more Sustainable Development Decisions

Research Question

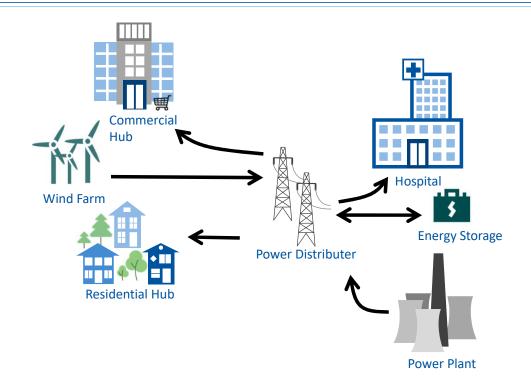
How to enable system developers to iteratively evolve a system in a sustainable way?

- Lead software and system engineers towards sustainable development decisions
 - Experimentation kit
 - Model the system under development
 - Sustainability assessment
 - Inform developers about assessment results for currently modeled system

- Extend models with sustainability indicators
 - Language composition: Architecture Description
 Language and Sustainability DSL
- Extend sustainability DSL with domain-specific modeling libraries
 - Domain-specific indicators (e.g., LCSA indicators)

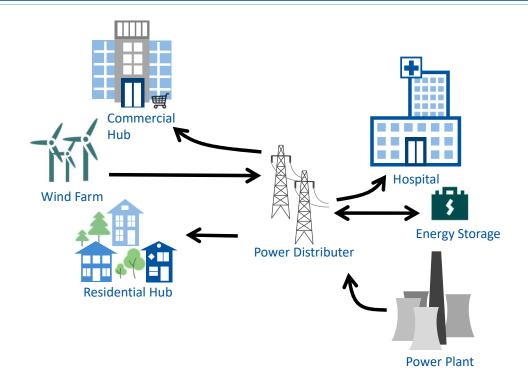


- Citizens and small commercial entities
- Local energy generation & storage
- Local energy trading
- Citizens interact directly with electrical distribution system



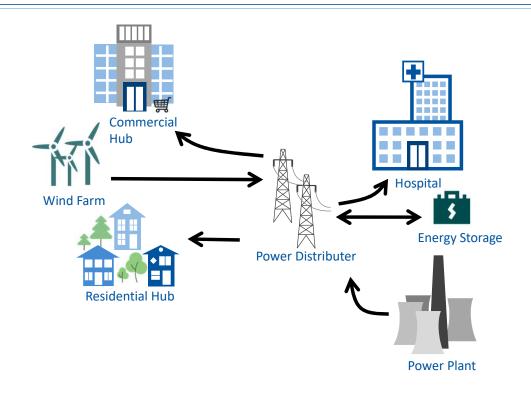
- Architecture Description Language
 - MontiArc using MontiCore language workbench

```
component CitizenEnergyCommunity{
                                              MA
 1
      ... port ...
 2
 3
      component Hospital hospital;
 4
      component CommercialHub comHub;
 5
      component ResidentialHub resHub;
 6
      component WindFarm windfarm;
 7
      component PowerDistributor distrib;
 8
      component EnergyStorage storage;
 9
      component CoalPowerplant powerplant;
10
11
12
13
14
15
```

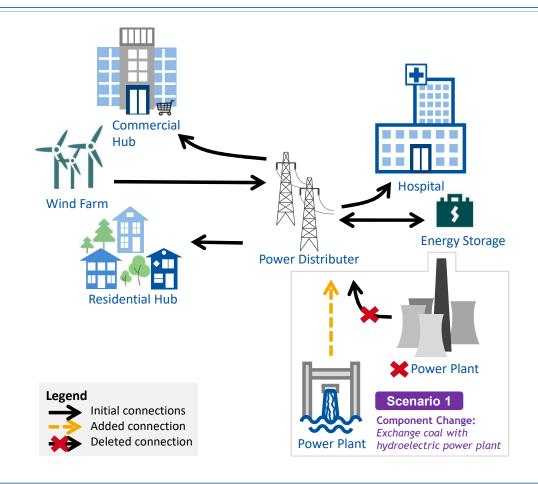
- Architecture Description Language
 - Sustainability DSL

```
component CitizenEnergyCommunity{
                                              MA
 1
      ... port ...
 2
 3
      component Hospital hospital;
 4
      component CommercialHub comHub;
 5
      component ResidentialHub resHub;
 6
      component WindFarm windfarm;
 7
      component PowerDistributor distrib;
 8
      component EnergyStorage storage;
 9
      component CoalPowerplant powerplant;
10
11
      satisfy sustainability{
12
        sdg: [7,11,13]...
13
14
15
```

- Architecture Description Language
 - Sustainability DSL

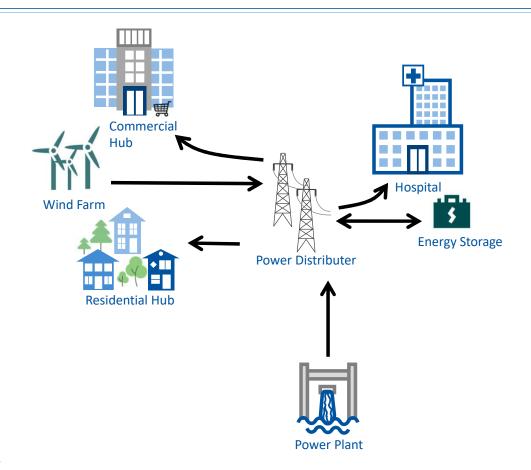
```
component CoalPowerplant{
                                          MA
 1
      port
 2
        out ElectricalEnergy ee;
 3
 4
      sustainability{
 5
        type: energy, structure, process;
 6
        indicators{
          consumption: coal;
 8
          co2Emission: 950 gCO2/kWh;
 9
          landscapeUsage: 1km^2;
10
11
12
13
14
```

Evolution Scenario 1 | Component Change

Black-box architecture is unchanged

```
component HydroPowerplant{
                                          MA
 1
      port
 2
        out ElectricalEnergy ee;
 3
 4
      sustainability{
 5
        type: energy, structure, process;
 6
        indicators{
          consumption: renewable, hydro;
 8
          co2Emission: 24 gCO2/kWh;
 9
          landscapeUsage: 2km^2;
10
11
12
13
14
```



Evolution Scenario 1 | Component Change

• Sustainability Assessment

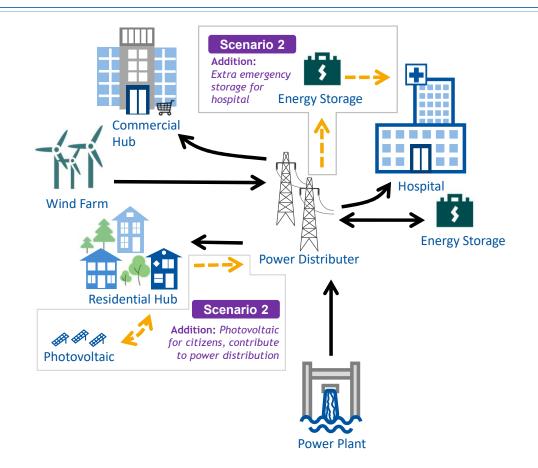
- assessed by experts or
- passed on to assessment systems
 - domain-specific systems
 - Sustainability Evaluation Experience R (SEER) [KMC+20]

Example

- Reduced the power plant's CO₂ emissions by over 95%
- Slightly positive effects for SDGs 7, 11, and 13

[KMC+20] J. Kienzle, G. Mussbacher, B. Combemale, L. Bastin, N. Bencomo, J.-M. Bruel, C. Becker, S. Betz, R. Chitchyan, B.H.C. Cheng, S. Klingert, R.F. Paige, B. Penzenstadler, N. Seyff, E. Syriani, C.C. Venters: Toward model-driven sustainability evaluation. Commun. ACM 63, 3, 2020.

Research Area



Evolution

- Scenario 2
 - Addition of emergency energy storage
 - Addition of photovoltaic units to residential hubs
- Assessment
 - Better results

Sustainability Assessment

- Lifecycle Sustainability Assessment (LCSA)
 - LCA = Environmental Life Cycle Assessment
 - LCC = LCA-type Life Cycle Costing
 - SLCA = Social Life Cycle Assessment

- Lack a connection between LCSA indicators and SDG goals and more concrete target
 - As of 2022, 14 SDG goals have not yet been assigned LCSA indicators

(Some) Challenges

- Tool supported but also manual effort
- Data availability
- Some approaches in practice consider only two of the three main sustainability aspects
- Lack interconnectedness among the three areas
- Do not follow cause-effect chains
- System boundaries unclear/ inconsistent
- Non-transparent weighting of results
- Lack of agreement in the international community on social targets to achieve for many social indicators

- ...

Sources

- M. Finkbeiner, E.M. Schau, A. Lehmann, M. Traverso: Towards Life Cycle Sustainability Assessment. Sustainability, 2010.
- S. Valdivia, J. G. Backes, M. Traverso, G. Sonnemann, S. Cucurachi, J. B. Guinée, T. Schaubroeck, M. Finkbeiner, N. Leroy-Parmentier, C. Ugaya, C. Peña, A. Zamagni, A. Inaba, M. Amaral, M. Berger, J. Dvarioniene, T. Vakhitova, C. Benoit-Norris, M. Prox, R. Foolmaun, M. Goedkoop: Principles for the application of life cycle sustainability assessment," The International Journal of Life Cycle Assessment, vol. 26, no. 9, 2021.
- J. Martínez-Blanco, A. Lehmann, P. Muñoz, A. Antón, M. Traverso, J. Rieradevall, M. Finkbeiner: Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, vol 69, 2014.

Roadmap

Refining and extending
Sustainability DSL for other domains

Combine with digital twins

Further research interlinkages between SDGs

Extend with modelprocessing tooling for automated sustainability assessments

Extend approach for **other languages** beside ADLs

Summary and Discussion

Enabling Informed Sustainability Decisions: Sustainability Assessment in Iterative System Modeling

Gabriele Gramelsberger Theory of Science and Technology RWTH Aachen University

Judith Michael

F ON Research Cente

School of Business and Economic RWTH Aachen University

School of Business and Economics RWTH Aachen University

then developing and evolving systems, techologics, and processes over a longer period of time sus-inability plays a significant role in each decision point of developers. Such systems include the production domain, internet of Things (loT), Cyber-Physical System (CPS), or

throughout its life cycle in a sustainable way.

Contribution. To make these informed decision.

Architecture Description Languages. For modeling system

Facilitate the sustainability decision-making throughout the *lifecycle of systems* by embedding sustainability descriptions in ADL models

...more in the paper

- What additional methods are needed to support evolution?
- How to increase the SDG knowledge of technological experts?
- How to increase automation in the assessment?

