Modeling

The Swiss Army Knife of Engineering Methods

Dr. Judith Michael Software Engineering RWTH Aachen

http://www.se-rwth.de

 @JudithMichael_

...about research with Bernhard Rumpe and my colleagues from the Chair of Software Engineering

06.06.2023, Traunkirchen

WHAT TO EXPECT FROM THIS TALK?

The Internet of Production (IoP) develops techniques for digital shadows and digital twins

Vision of the **IoP**

- Central scientific approach of the IoP: digital shadows as mediators between the vast amounts of heterogeneous data and detailed production engineering models
 - Sufficiently aggregated, multi-perspective and persistent datasets
 - Generated by deliberate selection, cleaning, semantic integration and pre-analysis
 - Used for reporting, diagnosis, prediction and recommendation in domain-specific real-time
- The Internet of Production is huge:
 - 87,5 researchers (up to 2x7 years)
 - 13 research managers
 - 4 support positions
 - Overall app. 200 employees

Digital Twins as complex, long-lasting, software-intensive systems

Original System

Digital Twin

contextual data and their aggregation and abstraction

A Digital Twin of a system consists of

- · a set of models of the system and
- a set of digital shadows, <
 - both of which are purposefully updated on a regular basis, and
- provides a set of services to use both purposefully with respect to the original system.
- The digital twin interacts with the original system by
 - providing useful information about the system's context and
 - sending it control commands.

Kinds of Engineering Models usable for a Digital Twin

- Structural Models: Representing relevant parts of the system-of-interest
 - The developed system
 - The environment of the developed system
 - Interactions between the developed system and the environment
- Behavioral Models: Describe a system's actions
- Physical Models: Objects that are identical in the relevant attributes of the real system or similar, e.g., test bench
- Geometrical Models: Mathematical description of shapes
 - Procedural: Define shapes implicitly by an algorithm that generates the form
 - Digital Image: Represent shapes as a subset of a fine regular partition of space
- Mathematical Models: Expressions or numerical methods to convert input data into outputs with the same functional dependence as the actual system
 - Explain or prescribe system behavior

UML/SysML/Ontology

STEP (ISO 10303)

Modelling Languages in & for Systems Engineering

- Digitalization of engineering domains demands explicit languages
- Languages are a key for systems engineering, e.g.,
 - Physical modeling: Modelica, Simulink
 - CAD: STEP, NX CAD, ECAD
 - Simulation: Dymola
 - Knowledge: OWL, RDF
 - Integration: AutomationML
 - Circuits: VHDL
 - Building Information Models (BIM)

Reuse Engineering Models from System Design for Engineering Digital Twins

- Cyber-physical systems are complex
 - Consist of multiple components
 - Offer different functionalities
- Complexity reflected in their digital twins
 - Cover different functions and views
- Creating a Digital Twin requires
 - Domain knowledge about the physical system
 - Software engineering skills
 - Is time-consuming

Goal:

Reuse engineering models created during system design for systematic and efficient definition of larger parts of a Digital Twin

Analyzing STEP Files for Deriving Digital Twins

 Different assemblies in CAD models form a functional unit

Challenge:

- Units are just an intellectual property of the domain experts, not the models
- Functional units often not reflected in the CAD model

Goal:

- Extracting contact points of different assemblies to detect and extract functional units
 - Ultimate goal: Construct Digital Twins with respect to functional interrelationships

[CJW+22] B. Caesar, N. Jansen, M. Weigand, M. Ramonat, C. S. Gundlach, A. Fay, B. Rumpe: Extracting Functional Machine Knowledge from STEP Files for Digital Twins. ETFA 2022

Ontology Mapping and Graph Analysis

- 1. Extraction of assemblies and mutual events between modeled concepts
 - translational and rotational constraints
- 2. Transformation of information into a graph based on an ontology design pattern (ODP)
- 3. Group the system components into functional modules
 - Atomic function enables the movement of two components relative to each other

[CJW+22] B. Caesar, N. Jansen, M. Weigand, M. Ramonat, C. S. Gundlach, A. Fay, B. Rumpe: Extracting Functional Machine Knowledge from STEP Files for Digital Twins. ETFA 2022

System Specification as Function

- A system defines a function
 - it encapsulates a physical and computational structure
 - performs data, energetic and physical transformations
 - and is connected to its context through its interfaces.
- A system function is described through its input and output signature
 - types and forms of the
 - signals / data
 - energy flow
 - material flow
- The functionality is described through the
 - relation between input and output

This concept of function is our first universal specification and construction principle

The Underspecification Principle

- Deterministic and fully specified relations are normally not achievable
 - Delays happen
 - Energy fluctuates
 - Abstraction introduces lack of information
- Underspecification is the ability to describe the desired range of allowed behaviors (instead of a single, determined behavior)
- Advantages:
 - Easier to specify
 - Can be well combined with variant-building and methodical refinement

Controlled, explicit underspecification is the second universal specification principle

Composition

- Composition is an act or mechanism to combine simple elements to build more complicated ones
- Examples: function composition (math), product composition (mechanics), software composition (CS),
- System is composed of components.
- Component is atomic or hierarchically composed of simpler components.
- Sub-system ~ not-atomic component

Composition is the third universal construction principle It helps to manage complexity.

The Center for Systems Engineering integrates the experience concerning system and product development from different disciplines at RWTH Aachen university

RWTHAACHEN UNIVERSITY

Prof. Dr. Christian Brecher Prof. Dr. Günther Schuh Innovation Management and Production

RWTHAACHEN UNIVERSITY

Prof. Dr. Georg Jacobs **Systems Engineering**

Prof. Dr. Bernhard Rumpe **Software Engineering**

Systems Engineering experts from different companies, branches and disciplines are part of the Center for Systems Engineering

BMW GROUP

We bring together interdisciplinary experts to shape the development of tomorrow – learning together and from each other in five benefit categories

MBSE – Parameter triggered processes by global transparent modelling of the entire design process (I/II)

MBSE – Parameter triggered processes by global transparent modelling of the entire design process (II/II)

Digital Twin Cockpit for the Parameter Management in the Engineering of Wind Turbines

From Systems Modeling to Data Structures

Example from the Fischertechnik Factory demonstrator


```
package Vehicles(
                                                           SysML
 import Items::Cup;
 import Stations. Station;
 part def Wheel;
 part def Engine;
 part def Vehicle
   attribute func: Function;
   attribute reachedDestination:boolean;
   part wheels:Wheel[2..8];
   part engine: Engine;
   part control:Controller;
   bind reachedDestination = control.TargetPort.isFinished;
 part def TransportCart specializes Vehicle (
   attribute function redefines func - Function.transport;
   part cartWheels: Wheel[4] subsets wheels;
   part def Storage (
      attribute capacity:int;
     port cupIn:CupPort;
     port cupOut: "CupPort;
 part def Sensor{
    attribute sensedObstacle:boolean;
   port sensorPort: SensorPort;
 part def Controller
   attribute target:String;
   bind target - TargetPort.station.position;
   port def TargetPort{
      attribute isFinished:boolean;
      in item station: Station;
```


Creating Digital Twin Cockpits with MontiGem [DMR+20]

- Digital twin cockpit [DMR+20]
 - visualization of monitoring data and models of CPS
- Generating digital twin cockpits
 - from models
 - with the generator framework MontiGem [GMN+20]
 - loose coupling with DT services
- DT services
 - e.g., self-adaptivity (MAPE-K), AI, visualization, conformance checking, optimization
 - interfaces to CPS | 3rd party applications
- Applied in several use cases
 - injection molding [DMR+20]
 - engineering of wind turbines [MNN+22]
 - automated hospital transportation system [BMR+22]

[DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits. ER'20

Transformations from 6-Axis Robot Engineering Models into parts of a Digital Twin

From Data Models to parts of Digital Twins

- Digital Shadows
- DT Cockpits
- Semantic annotation
- Digital Twin Services
 - Process Mining:Discovery & Conformance Checking
 - Neural Networks

Models@run.time in Digital Twins

Examples

- Aggregate and abstract digital shadows [BBD+21]
 from live data
- Process models [BMR+22] to describe the CPPS behavior or human-CPPS interaction
 - e.g., derived using process discovery [BHK+21]
- Context models to capture context data [MR23]
- Task models to support human behavior [MR23]
- Goal models to describe wished states [MRZ21]
- Event models [DMR+20, DHM+22] to describe events of a system and possible actions to reach a certain state
- Reasoning models,...

From System Models to Data Models and Digital Shadows

Extraction of Models from Sensor Data and Event Logs [BMR+22]

- Phase 1: Preparation
 - Extract event log (1) from sensor data of a physical object
 - Discover (2) domain information, (3) process models, (4) roles
 - Results: Domain CD, BPMN models, a tagging model
- Phase 2: Generation
 - Models (2,3,4) as input for (5) model-to-model transformation
 - Output: data models (views), GUI models (6)
 - (8) gen. PADTC source code
- Phase 3: Adaption
 - Add handwritten models (7), and handwritten code
- Phase 4: Runtime
 - PADTC connected to DT services
 - Live data (9) from the physical object or third-party applications & DT influence the physical object via commands
 - Domain users: interaction

[BMR+22] D. Bano, J. Michael, B. Rumpe, S. Varga, M. Weske: Process-Aware Digital Twin Cockpit Synthesis from Event Logs. In: Journal of Computer Languages (COLA), Volume 70, Elsevier, 2022

Low-Code Platforms for Model-Driven Digital Twins | Overview

2-step generation process

- LCDP engineer generates the lowcode platform
- Digital twin designer configures a digital twin via the LCDP and generate one or more DTs
- Domain experts operate on DTs

[DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, S. Varga, A. Wortmann: Generating Customized Low-Code Development Platforms for Digital Twins. COLA 70, 2022

Creating digital twins for ...

... elements in the physical world that can be monitored, sensed, actuated and controlled with a **long lifespan**

Digital Twins in various application domains

Human Factors?

Our Main Use Cases

Hospital Transportation

Wind Turbines

Simulation

Six-Axis Industrial
Robot Arm

Fischertechnik Factory

Biomanufacturing

Operation

Multi-

perspective

Design

Construction

Long-

lasting

Mining Transportation

GET THE MOST OUT OF YOUR SYSTEM MODELS!

Selected References

Modeling in Industry 4.0

- [BDJ+22] P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe, W. van der Aalst, K. Wehrle, A. Wortmann, M. Ziefle: A Computer Science Perspective on Digital Transformation in Production. ACM TIOT 3, 2022
- [FMR+22] K. Feichtinger, K. Meixner, F. Rinker, I. Koren, H. Eichelberger, T. Heinemann, J. Holtmann, M. Konersmann, J. Michael, E.- M. Neumann, J. Pfeiffer, R. Rabiser, M. Riebisch, K. Schmid: *Industry Voices on Software Engineering Challenges in Cyber-Physical Production Systems Engineering*. In: ETFA'22, IEEE, 2022.
- [Mic22] J. Michael: A Vision Towards Generated Assistive Systems for Supporting Human Interactions in Production. Modellierung'22

Digital Twins

- [MNN+22] J. Michael, I. Nachmann, L. Netz, B. Rumpe, S. Stüber: Generating Digital Twin Cockpits for Parameter Management in the Engineering of Wind Turbines. Modellierung'22
- [BMR+22] D. Bano, J. Michael, B. Rumpe, S. Varga, M. Weske: *Process-Aware Digital Twin Cockpit Synthesis from Event Logs*. Journal of Computer Languages (COLA) 70, 2022.
- [DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, S. Varga, A. Wortmann: Generating Customized Low-Code Development Platforms for Digital Twins. Journal of Computer Languages (COLA) 70, 2022.
- [MPRW22] J. Michael, J. Pfeiffer, B. Rumpe, A. Wortmann: *Integration Challenges for Digital Twin Systems-of-Systems*. SESoS'22
- [DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits*. ER'20.
- [KMR+20] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Model-driven Digital Twin Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems*. MODELS'20.

• [BHK21] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe, M.S. Uysal, W. M. P. van der Aalst, A. Wortmann: *Process Prediction with Digital Twins*. Models@runtime'21

Digital Shadows

- [BBD+21] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C. Hopmann, M. Jarke, I. Koren, M. Kröger, J. Lipp, J. Maibaum, J. Michael, B. Rumpe, P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh, and A. Wortmann: A conceptual model for digital shadows in industry and its application. ER'21
- [MKD+23] J. Michael, I. Koren, I. Dimitriadis, J. Fulterer, A. Gannouni, M. Heithoff, A. Hermann, K. Hornberg, M. Kröger, P. Sapel, N. Schäfer, J. Theissen-Lipp, S. Decker, C. Hopmann, M. Jarke, B. Rumpe, R. Schmitt, G. Schuh: A Digital Shadow Reference Model for Worldwide Production Labs. In: Internet of Production: Fundamentals, Applications and Proceedings, Springer, 2023.

MontiGem

- [DMM+22] I. Drave, J. Michael, E. Müller, B. Rumpe, S. Varga: Model-Driven Engineering of Process-Aware Information Systems. Springer Nature Computer Science, 2022.
- [DGM+21] I. Drave, A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga: A Methodology for Retrofitting Generative Aspects in Existing Applications. JOT 20, 2021
- [GMN+20] A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga: *Continuous Transition from Model-Driven Prototype to Full-Size Real-World Enterprise Information Systems*. AMCIS'20

Software Engineering Chair

- Language Workbench MontiCore
- Generator Framework MontiGem
- Model-based Systems Engineering
- SysML, UML
- Logics-based AI

Research Overview

Automotive / Cyber-Physical Systems

- Autonomous Driving
- Simulation
- Deep Learning
- Data Science
- Modeling Embedded Systems
- Test-Driven Development
- Requirements Engineering

Model-Driven Systems Engineering

- Systems Modeling Languages
- Digital Twins
- Domain-Specific Application
- Software Architectures
- Semantic Tool Integration
- Variability & Product Lines
- Industry 4.0, CPPS, Robotics

Model-Based Assistance and Information Services

- Models in Information and Workflow Systems
- Human-Centered Assistance
- Digital Transformation
- DSLs for Rights, Roles, Privacy
- Digital Twin Cockpits
- Behavior/ Process Modeling

Modeling Language Engineering

- Development Tools
- Language Workbench MontiCore
- UML, SysML, Architecture DL
- Domain-specific languages (DSL)

- Generation, synthesis
- Testing, analysis, verification
- Software architecture, evolution
- Agile methods
- Compositional DSL engineering

Chair of Software Engineering Computer Science 3 RWTH Aachen University

Ahornstraße 55 D-52074 Aachen

Prof. Bernhard Rumpe rumpe@se-rwth.de

Dr. Judith Michael michael@se-rwth.de

