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Abstract Engineering digital twins is a software and
systems engineering challenge for which no systematic
approach exists. The Asset Administration Shell is be-
coming a popular foundation for digital twins in In-
dustry 4.0 and it comes in different types that support
the engineering of different kinds and parts of digital
twins. We investigate how it supports realizing common
requirements for digital twins. To this end, we investi-
gate how each of the three Asset Administration Shell
types can contribute to the systematic engineering of
specific components of digital twins. Therefore, we ana-
lyzed popular definitions and conceptual models of dig-
ital twins and extracted requirements that at least two
of them share. We compare the resulting requirements
with Asset Administration Shells of different types and
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conclude with open challenges in the implementation of
digital twins with this technology. This supports practi-
tioners and researchers in identifying the most suitable
type of Asset Administration Shell for their specific dig-
ital twin engineering needs and identifies gaps worthy
of future research toward a systematic engineering of
digital twins.
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1 Introduction

Digital twins [38,55,90] are becoming the technolog-
ical backbone for better understanding, engineering,
operating, and managing (cyber-physical) systems [28,
69]. They are investigated, created, and deployed in a
variety of domains, including automated driving [25],
biology [51], medicine [56], wind energy [66], smart
cities [16], civil structures [63], manufacturing [15],
and many more [28]. The various digital twins serve
different purposes relative to the twinned actual
system (AS) [38], including analysis [77], control [96],
and behavior prediction [54]. Also, they are used at
different times relative to the AS, e.g., prior to its
existence to explore its design space [59] or at its
runtime to optimize its behavior [14].

A digital twin is a software system [72] that connects
to an AS, automatically receives data from it, performs
computations, and sends instructions back to it [55].
Such digital twins can use different kinds of models,
from (1) engineering models of their twinned counter-
part (e.g., AutomationML [86], IEC 61499 [101] mod-
els, or simulation [43] models) to give meaning to its
data (models of the actual system used in the digital
twin), they can be built from (2) software models [71] or
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event logs [12] (models for the digital twin used during
development), and they can use (3) models at runtime
to support their configuration by domain experts [57]
(models for the digital twin used during operation). Ul-
timately, digital twins employ these models together
with data observed from and about the AS [80] to de-
scribe, predict, and prescribe its behavior [38].

Manufacturing is one of the most prominent do-
mains investigating the use of digital twins [28] and
software engineering has produced various technologies
to facilitate their engineering [81,44]. An important im-
plementation technology for digital twins in manufac-
turing is the Asset Administration Shell (AAS) [99],
which is driven by the International Digital Twin Asso-
ciation (IDTA)1. The AAS is intended to be the single
source of truth digital representation of any kind of as-
set throughout its lifecycle. To this end, the AAS is
defined as a hierarchy of data models called submodels,
each of which represents components or aspects of the
asset to be described. For instance, an AAS of a car
could feature submodels for the motor, the drive train,
the energy efficiency, and many more depending on the
purpose of the representation. Based on this idea, three
types of AASs have been identified:

– Type 1 AASs relate models of an asset (e.g., for
a mobile robot, this might include submodels repre-
senting the base, sensors, actuators, installed soft-
ware, task queue, operation history, etc.).

– Type 2 AASs connect these models to live data
from the asset (for the robot example, this could en-
tail updating the pose information of its base model
regularly).

– Type 3 AASs can control these assets and com-
municate to other AASs (e.g., the robot AAS can
communicate with a manufacturing execution sys-
tem AAS to update the task queue model to support
new kinds of tasks).

The AAS is considered to be the essential tech-
nology for engineering digital twins by the IDTA,
has been successfully applied to predictive mainte-
nance [84], automotive device configuration [100], or
model management [24], and is subject to ongoing
development. Hence, the AAS seems to become an
important foundation for systematically engineering
digital twins. Hence, understanding the support of
its different types for engineering digital twins is
beneficial to researchers and practitioners in software
and systems modeling. Therefore, we compare the
requirements raised by popular conceptual models of
digital twins with the different types of AASs. The
contribution of this article, thus, is as follows:

1 IDTA: https://industrialdigitaltwin.org

1. A summary of common requirements on digital
twins based on analyzing digital twin standards
and white papers of associations and consortia that
foster the realization of real-world digital twins in
industry.

2. An analysis of the different types of asset adminis-
tration shells and their support for addressing the
identified requirements.

3. An outlook on future challenges to efficiently engi-
neer digital twins based on this analysis.

In the remainder, Section 2 illustrates the state-of-
the-art on digital twins and the AAS before Section 3
introduces an illustrative example of an AAS from man-
ufacturing. Afterward, Section 4 analyzes common re-
quirements on digital twins and Section 5 compares the
capabilities of the different AAS types with these re-
quirements. Based on this, Section 6 outlines challenges
and Section 7 discusses related work. Finally, Section 8
concludes.

2 Background

2.1 Digital Twins

The understanding of digital twins differs widely in lit-
erature (cf. 112 definitions of digital twins2). As of the
main purposes of a definition is to decide whether some-
thing is in the set of defined things or outside of it, most
of these definitions fail at supporting to make this de-
cision precisely. Instead, the lowest common denomina-
tor seems to be that a digital twin represents something
(e.g., a system, a process, or a workpiece), which is of
little use for detailed discussions about their functions,
engineering, and operations. Moreover, often these def-
initions are

– ambiguous, by deferring to another undefined term,
such as a “virtual representation” [7], a “computable
virtual abstraction” [93] , or a “a virtual projection
of the industrial facility into the cloud” [104];

– narrow, by focusing on specific use cases, domains,
or technologies, such as a “digital model of the real
network environment” [35] or a ”virtual representa-
tion based on AR-technology” [77]; or

– utopian, due to all-encompassing aspirations, such
as an “integrated virtual model of a real-world sys-
tem containing all of its physical information” [79],
a “complete digital representation” [61].

Ambiguous definitions would require a definition of
their fuzzy base terms (e.g., "virtual representation")

2 Digital twin definitions: www.wortmann.ac/digital-twin-
definitions

https://industrialdigitaltwin.org
www.wortmann.ac/digital-twin-definitions
www.wortmann.ac/digital-twin-definitions
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to enable deciding whether something is a digital twin
or not, while very narrow definitions (e.g., requiring
the use of AR technology) prevent understanding digi-
tal twins more generally, and utopian definitions would
either logically or economically prevent building such
digital twin (e.g., modeling the behavior of the atoms
of the windshield wiper fluid of a car usually is not
considered required for a vehicle digital twin, yet that
would be necessary for the digital twin to contain all
physical information of the car).

Among the plethora of definitions, characteriza-
tions, and reference models [40] of digital twins, few
have been widely accepted to be useful: either by
being cited by vast numbers of researchers in the
field of digital twins [55,91], by being formalized into
ISO standards [49], or by being accepted as common
ground by large industrial associations about digital
twins [33,34]. Section 4 discusses these in detail.

2.2 Asset Administration Shell

In the context of Industry 4.0 (I4.0) every element
owned by an organization having a value for the
execution of the process is defined as an asset [24].
Assets can be physical, such as production resources,
workpieces, and even the factory itself, but also non-
physical, such as models used for describing machine
behavior, software, or licenses [42].

The IDTA is developing the AAS [11,99] to pro-
vide a technology for realizing digital twins [73]. This
initiative started within Platform Industry 4.0, an ini-
tiative of the German Federal Ministry for Economic
Affairs and Climate Protection and the Federal Min-
istry of Education and Research together with German
industry, academia, associations, and unions. This tech-
nology is now also being taken up in Europe, as calls
for EU Horizon start mentioning that proposals should
take any relevant international standards (such as the
AAS) into account3. Alongside its political relevance,
the AAS has also achieved industrial relevance. There
are currently 118 partners4 organized in the IDTA (as of
July 2024), including German (e.g., SAP, Siemens, and
Volkswagen), as well as international enterprises (e.g.,
HUAWEI, Phoenix Contact, and Mitsubishi Electric).

The AAS is defined as the digital representation
of the asset containing all its relevant information
throughout its entire lifecycle [75] and is presented as
the basis of interoperability: on the one hand, it holds

3 Example call: https://ec.europa.eu/info/funding-
tenders/opportunities/portal/screen/opportunities/
topic-details/horizon-cl4-2023-twin-transition-01-04

4 IDTA partners: https://industrialdigitaltwin.org/
en/about-idta/members-idta

information of various types and on the other hand,
it functions as the interface for communication within
the I4.0 network through which information can be
exchanged between assets [82]. Since the AAS holds
relevant information throughout the lifecycle of the
asset, it must be capable of representing different sorts
of information, such as properties, modeled functional-
ities, parameters, a summary of included components,
as well as data that accrues during manufacturing or
simulation and also descriptions, such as their usage
instructions and technical specifications. This presup-
poses the ability to store or refer to heterogeneous data
and models [24].

The structure of an AAS is specified in the form
of a conceptual metamodel using UML class diagram
syntax [82]. Figure 1 shows an excerpt of this meta-
model focusing on the AAS submodels and their rela-
tions. Essentially, the AAS is organizing submodels hi-
erarchically and is working on standardizing submod-
els and their templates. Each individual submodel of
an AAS is intended to represent one content-related
or functional aspect of the represented asset. Submod-
els can be created individually applying the previously
introduced metamodel. To ensure consistency and in-
teroperability, the IDTA provides so-called submodel
templates. Submodel templates are also standardized
and publicly available in their content hub5, which cur-
rently features 89 submodel templates. Each parameter
in a submodel template is specified with an identifier,
its semantic meaning as well as a given example. The
semantic meaning is indicated in line with established
dictionaries, such as the ECLASS reference data stan-
dard for the unambiguous description of products and
services6. and the IEC Common Data Dictionary [47].
The scope of the perhaps best-known IDTA submodel,
"Digital Nameplate", for example, is to provide infor-
mation about the manufacturer and serial number of
an asset. The other submodel templates cover use cases
at a similar level of abstraction.

The main concept is the Asset Administration
Shell, which represents the entire AAS of the as-
set. It can consist of several submodels represented
by the class Submodel, which consists of abstract
SubmodelElements that either are of a specified
subtype, such as File or Property, or a composite of
SubmodelElements themselves.

The abstract class DataElement inherits from the
class SubModelElement from which further classes
inherit. The classes Property, Range, File, and

5 ITDA AAS submodel content hub: https:
//industrialdigitaltwin.org/en/content-hub/submodels

6 ECLASS website: https://eclass.eu/en/eclass-
standard

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://industrialdigitaltwin.org/en/about-idta/members-idta
https://industrialdigitaltwin.org/en/about-idta/members-idta
https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
https://eclass.eu/en/eclass-standard
https://eclass.eu/en/eclass-standard


4 Jingxi Zhang et al.

Submodel

<<abstract>>

SubmodelElement

SubmodelElementCollection
<<abstract>>

DataElement

Property File ReferenceElement Range

0..*

0..*

AssetAdministrationShell
0..*

Fig. 1: Structure of the AAS according to the meta-
model [37] based on [24,82]

ReferenceElement represent attributes of the asset.
In the class Property an information pair consisting
of one value and the value data type are defined. A
Range consists of two values and the data type of the
values. A File represents the type and location of
a file, whereas ReferenceElement defines a logical
reference either to another element of the AAS it is
included in, or to an element of another AAS.

The communication capability of AASs is differenti-
ated into passive, active, and I4.0-compliant communi-
cation capability–a distinction originally started by the
Association of German Engineers (VDI) [94]. Passive
AASs are also referred to as Type 1 AAS. Exchanged
on a file basis, these Type 1 AAS contain static mas-
ter data for an asset. Master data could for example
be a serial number, as in the "Digital Nameplate" intro-
duced previously, but also physical dimensions, material
properties, or electrical power consumption. The Type
1 AAS, hence, consists of serialized files representing
the asset and can be exchanged manually among engi-
neers. Its data model is defined by the AAS metamod-
els. Those metamodels are specified in different tem-
plates which the IDTA provides to construct the AAS
for different purposes7. These templates describe the
structural composition of the submodels and the rela-
tionships between AASs. This enables domain experts
to provide their knowledge in an ordered manner en-
abling expandability and modularization. As a passive
entity, the Type 1 AAS does not have any automated
data flow from or to its asset. Thus, the information
in the Type 1 AAS describes asset types and instances
as-designed without any real-time updates.

In addition to the serialized files of the Type 1 AAS,
for Type 2 AASs an API is provided for the interaction
with other components. Through this API, the Type 2
AAS can become service-oriented and reactive, i.e., it

7 IDTA AAS submodels list: https://
industrialdigitaltwin.org/en/content-hub/submodels

1 2 3

AAS as a file exchange 
between partners

AAS with API to the 
information model for an 
application of a partner

Interaction between 
AAS using I4.0 language

Apps with 
access to 
AAS-API I4.0 language

AAS meta-model

Fig. 2: The 3 types of AAS according to Plattform
Industrie 4.0 [83]

may consider any information provided by the asset or
any third party software, e.g., runtime information such
as containing static and dynamic information about
the asset. This establishes a mainly unidirectional data
flow, in which live data is added to the models of the
Type 1 AAS and where external methods, services, or
tools can represent and relate this data.

Mutual understanding seems to be that the Type
3 AAS is an extension of Type 2 AAS that enables
the AASs to perform I4.0-compliant communication
according to the “Industrie 4.0 Language” [95] and
therefore allows vertical integration into other AAS
instances, this is referred to as Type 3 AAS. Moreover,
the Type 3 AASs can feature algorithms to control
the represented asset (to some extent), as well as to
analyze the data and manipulate its models. Type 3
AASs thus extend across all RAMI4.0 [46] layers (i.e.,
from the asset over communication to the business
layer and, therefore, are able to implement business
processes on their own. Unlike Type 1 AASs and
Type 2 AASs, the Type 3 AAS has not yet been fully
specified but is subject to ongoing research [50,87].

The admin-shell-io package8 by the IDTA can be
considered as a reference implementation for manag-
ing administration shells. The package consists of the
AASX9 package explorer, with which administration
shells can be created, edited, and visualized, but also
includes the AASX server as infrastructure for deploy-
ment. If the AAS is to be integrated into a software

8 admin-shell-io: https://github.com/admin-shell-io
9 Eclipse AASX website: https://github.com/eclipse-

aaspe/

https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
https://github.com/admin-shell-io
https://github.com/eclipse-aaspe/
https://github.com/eclipse-aaspe/
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Fig. 3: The 3-axis milling machine for education and
demonstration, known as OSACA (above) and its 3D
model (below)

project, the Eclipse BaSyx10 project provides an open-
source I4.0 middleware. BaSyx is available under the
MIT license and offers an SDK for implementing AASs
in Java, Python, and RUST.

3 Motivating Example

To better illustrate how AASs are used to store infor-
mation about an asset, we provide an illustrative ex-
ample for an asset from the manufacturing domain and
its representation in an AAS. Consider the following as-
set: A 3-axis milling machine (see Figure 3), equipped
with a Beckhoff TwinCAT control system from previ-
ous research [53,98], for precision cutting, drilling, and
shaping of materials. Imagine a block of aluminum po-
sitioned on the machine’s work table. The operator pro-
grams the machine to create a complex part, such as a
gearbox component. The spindle, which holds the cut-
ting tool, moves along the X-axis (front-to-back) and
the Y-axis (up-and-down), while the table moves from
10 Eclipse BaSyx website: https://projects.eclipse.org/
projects/dt.basyx

Asset Administration Shell

ID: https://www.isw.uni-stuttgart.de/halle/aas/osaca1
Asset: Milling_machine_instance1 
AssetID: https://www.isw.uni-stuttgart.de/halle/asset/osaca1Header

Body

Submodel Bill of Materials (BOM)

ID: [IRI]MMi1BOM
SemanticID: BOM Entity: Milling machine instance

Entity: Spindle Entity: PLC_Control

Entity: Hydraulic motors Entity: Screws

Entity Relationships

Submodel Digital Nameplate

Submodel 3D Models

Submodel OPC UA Server Data

ID: [IRI] MMi1Rels
SemanticID: MMRELS Relation: 

Spindle and milling machine instance 

Relation: 
PLC and milling machine instance

ID: [IRI]MMi1
Manufacturer name: Bosch Rexroth
Description: 3 axis milling machine
SerialID: 1-18031
CompletionYear: 2018

Submodel Simulation Models

Fig. 4: Excerpt of the AAS of the 3-axis milling ma-
chine and its submodels

left to right along the Z-axis, bringing the material into
contact with the tool. As the spindle rotates the cutting
tool at high speeds, it carves the aluminum to the speci-
fied dimensions and contours into a precisely engineered
part. The milling machine contains hydraulic motors to
enable movement along the axis, an interface to control
the motors, and adapters to connect them physically to
the milling machine. This setup further contains com-
ponents such as fuses, switches, and a cabinet which are
noted down in a bill of materials. For this machine, 3D
models and simulation models that describe a milling
process exist from its original engineering and the ma-
chine is capable of providing data at runtime via OPC
UA specifications [60]. These data include, e.g., the po-
sition of the tool and the spindle speed.

We illustrate the AAS for this 3-axis milling ma-
chine in Figure 4. The AAS consists of a header with
an AAS identifier (ID), an asset ID, an asset descrip-
tion, and a body containing further information, which
commonly is captured in different kinds of submodels,
includes:

1. A "Hierarchical Structures enabling Bills of Ma-
terial" (BOM) submodel template (IDTA 02011),
which enables a hierarchical structure to represent
the components of the milling machine. The BOM
has relations to the described parts of the milling
machine, e.g., the relationship between the milling
machine and the spindle. Described parts are
entities of hydraulic motors, the spindle, the motor
control, all screws, the showcase, and the milling
machine as an entity.

https://projects.eclipse.org/projects/dt.basyx
https://projects.eclipse.org/projects/dt.basyx
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2. A "Digital Nameplate for Industrial Equipment"
submodel template (IDTA specification 02006),
which contains an ID as well as the manufacturer’s
name, a description of the product, a serial number,
and a year of completion of the machine.

3. An "OPC UA Server Data Sheet" submodel tem-
plate (IDTA 02009), which contains an integration
of the description of OPC UA servers. The IDTA
template for this submodel is at the time of our re-
search still in progress.

4. An "Provision of 3D Models" submodel template
(IDTA 02026), that is able to provide 3D models
of the machine. This includes both a 3D model and
a simulation model.

5. An "Provision of Simulation Models" submodel tem-
plate (IDTA 02005), that is able to provide simula-
tion model files of the machine. The simulation it-
self remains in its specific exchange format and is
linked in. The submodel contains further informa-
tion about the type of simulation, on how to use the
model and about the areas of application.

Formalizing the description of assets through well-
defined submodels facilitates the automated process-
ing of an AAS. If, for example, the "OPC UA Server
Data Sheet" is fully specified and provided with assets,
it allows reason about the self-configuration capabili-
ties of the asset in a flexible factory. Moreover, being
equipped with corresponding submodels, for instance,
eases transferring assets from one entity to another: if
the described machine is sold, the AAS could be made
available to the future operator. This way, the new op-
erators would have access to simulation models that
were created during engineering and could continue to
use them, for example during a conversion. This further
use is made possible in particular by the fact that (a)
the uniform structure of the submodels means that all
stakeholders are aware that a simulation model exists
and (b) not only the model is transferred, but also its
original software and scope.

In order to provide a Type 1 AAS for the exam-
ple machine the previously specified AAS is serialized
including its submodels, static information such as re-
lationships of the 3-axis milling machine are depicted.
The provision of the AAS via Eclipse BaSyx, and there-
fore the provision via a functional interface, turns the
Type 1 AAS of the illustrative example in Section 3
into a Type 2 AAS. The Type 2 AAS no longer solely
describes the static information of the example ma-
chine, but also integrates sensor values via the OPC
UA server. Static and dynamic information of the 3-
axis milling machine can be accessed via the BaSyx
Graphical User Interface (GUI).

Physical

Object Digital

Object

Digital Model

Physical

Object Digital

Object

Digital Shadow

Physical

Object Digital

Object

Digital Twin

Manual Data Flow Automated Data Flow

Fig. 5: Conceptualization of digital twins according to
their data flows to and from the actual system [55]

4 Common Requirements on Digital Twins

We introduce important conceptual models and frame-
works describing digital twins–in general or in the con-
text of manufacturing–from which we derive common
requirements on digital twins to compare these with
the AAS (cf. Section 5).

4.1 Popular Academic Definitions

The most prominent qualitative definition of digital
twins distinguishes these from digital models and dig-
ital shadows [21] based on the automated data flows
between the (cyber-)physical and digital object (cf. Fig-
ure 5) [55]. Here, a digital object is considered to be:

– a digital model, if the data flows between both are
manual, i.e., change on one side must be propagated
manually to the other side. As such, the type 1 AAS
resembles the notion of digital models, as changes to
the represented asset must be traced to the models
of the AAS manually.

– a digital shadow, if the data flow from the phys-
ical object to the digital object is automated, i.e.,
changes to the physical object lead to changes in the
digital object and in the opposite way, the data flow
still is manual. This resembles to the notion of a type
2 AAS, which, however, only requires that this uni-
directional communication channel exists, but not
that changes in the asset are traced automatically
into the AAS.

– a digital twin, if both data flows are automated,
i.e., if something changes in the digital object, this
change is propagated to the physical asset and vice
versa. As this only makes sense if there is some
logic in the digital objects that can entail changes to
the physical object, this conceptualization resembles
type 3 AASs to some extent.

Also, the authors hide much of the complexity of
digital twins in the data flows: for instance, this defi-
nition already demands that the digital object can re-
ceive data from its actual (cyber-physical) system and
send data back to it, i.e., it needs to be a sufficiently
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Services

Physical

Entities Data

Virtual

Models

Fig. 6: Conceptualization of digital twins according to
their constituents and data flows [91]

complex software system that takes care of communica-
tion, synchronization, and digital representation. This
also demands an interface to the actual system (e.g.,
through OPC UA [36] or MQTT [58]), means to an-
alyze the data, and user interfaces to control the be-
havior of the digital twin. Moreover, the model does
not make explicit how frequently the data between the
actual system and its digital twin must be exchanged
(which means the digital twin might be asynchronous
with the actual system for a long time). Also, how hu-
man decision-making can be incorporated, which often
is necessary in manufacturing and other domains oper-
ating complex systems in reality, such as automotive or
avionics, is not explained.

The 5D digital twin model extends the model of
based on data-flows [55] with the additional dimensions
data, models, and services [91]. Here, a digital twin is
a system that comprises elements of 5 dimensions: (1)
the AS itself, (2) data from and about the AS, (3) mod-
els of the AS as well as models of the digital twin, (4)
services about the AS (e.g., predictive maintenance, re-
porting), and (5) connections between the elements of
these dimensions (cf. Figure 6).

This model assumes that all connections between all
constituents are bidirectional, i.e., services can directly
read data from the actual system and send commands
to it as well. This allows making changes to the ac-
tual system without informing the digital twin. More-
over, both the services and the actual system can in-
teract with data and models of the digital twin inde-
pendently, which allows for introducing inconsistencies
between the real-world system and its representation.
Moreover, this model does not prescribe any minimally
required models, data, or services.

4.2 Popular Industrial Definitions

The Digital Twin Consortium (DTC) devised a list
of potential capabilities of digital twins 11 according
to six different categories (cf. Figure 7). According
to this digital twin periodic table, digital twins
can provide (1) data services, (2) integration, (3)
intelligence, (4) user interaction, (5) management
functions, and (6) trustworthiness capabilities. Data
services (1) contain data management processes, such
as acquisition and ingestion, data interpretation with
ontologies, data management with a model repository,
data management methods such as pub/sub, batch
processing, and data aggregation. Integration (2)
contains integration methodologies, such as platforms,
APIs, and enterprise systems for both directions of
abstraction more coarse, as well as more detailed
systems. Intelligence (3) describes components and
services that encompass reasoning, planning, machine
learning, simulation, recommendation systems, and
any other capabilities being considered intelligent.
User interaction (4) contains all features the system
provides for the monitoring, consisting of visualization
of data, models, relationships and interaction, con-
sisting of gamification, BPM, workflow and business
intelligence methods without influencing the machine.
Management functions (5) are mostly directed to
the manipulation of the system. Here for the device,
the logging of the system and the data methods are
advised to be used for interpretation and configuration
of machines. Trustworthiness capabilities (6) contain
all features important for the trustworthiness of the
system.

Based on these observations, the DTC proposes an
architectural framework of building blocks for creating
digital twins for different applications [34]. Its main
components are a virtual representation on top of an
IT/OT platform and the service interfaces of this rep-
resentation. The virtual representation consists of data
(“stored representations”), models, and functions for
their integration. Taken this to the illustrative example
from Section 3: the models of the milling machine can
consist of multiple different models. These models could
be designed by providing SysML in addition to 3D mod-
els in a 3D environment for simulation purposes. It pro-
vides interfaces (1) to synchronize with the real world,
(2) with external data sources, and (3) to deploy ser-
vices leveraging the virtual representation. The IT/OT
platform includes orchestration middleware, network-
ing infrastructure, APIs that provide access to services,
11 DTC capabilities table: https://www.
digitaltwinconsortium.org/initiatives/capabilities-
periodic-table/

https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
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Fig. 7: Potential capabilities of digital twins according to the Digital Twin Consortium9

and integration representation/functions for data stor-
age and data transformation. This middleware could
be manufacturing-specific management systems or even
systems composed of data management services such as
a database, a network interface such as OPCUA, or lo-
cal platform-specific APIs from cloud platforms such as
Azure.

Another main part of the architectural framework
are services for privacy, physical and cyber-security,
safety, resilience, and reliability. For example, the
milling machine could provide safety measurements
for its condition. In milling processes, it is often not
safe for a worker to open the cabin in which a mill is
located. Other metrics such as resilience and reliability
can be measured based on KPIs. Finally, security
and privacy are often addressed at a higher level of
abstraction. The network within a factory must be
secure from outside attacks to prevent malicious use of
machines within the factory.

The Digital Twin Framework for Manufacturing
(ISO 23247) [49] defines a conceptual digital twin
framework for manufacturing. The framework consists
of three layers of components that provide functionality
on top of observable manufacturing elements (OMEs),
which are items providing observable properties (e.g.,
staff, a manufacturing plant, a robot) defined through
existing standards from the manufacturing domain.
The device communication entity’s bottom layer
comprises functional elements (FEs) to collect and
process data from OMEs, as well as to actuate and
control the OMEs. An example of such FEs could be
a system that uses cameras and distance sensors for

Fig. 8: The DTC platform stack architectural frame-
work for digital twins [34]

monitoring. Such a system could accurately determine
the position and condition of a workpiece under the
mill. The digital twin entity middle layer uses device
communication to represent, manage, operate, simu-
late, and maintain the devices observed and controlled
through the OMEs. For example, the distance and
camera inputs are collected, processed, and forwarded
to the digital twin entity. This entity contains models
and analysis methods based on simulation models of
the mill to predict a failure or malfunction. It could
also provide an interface for updating the models, such
as the path the mill needs to move along or the drilling
speed and settings of the environment.
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Fig. 9: Conceptual model of digital twins for manufac-
turing in ISO 23247 [49]

Through the user interface entity top layer, users
and additional services can leverage the digital twin.
For example, the interpreted data and model of the
machine could be visualized at run time for mainte-
nance without stopping the machine during milling. In
this way, downtime for maintenance can be reduced and
the behavior of the mill can be optimized under the su-
pervision of a machine expert.

4.3 Common Requirements on Digital Twins

We have analyzed the conceptual frameworks for digital
twins introduced above and identified capabilities that
are required by (1) at least one of the frameworks, (2)
at least two of the frameworks, and (3) all of the frame-
works. Table 1 summarizes our findings, where each row
represents an identified capability. To this, the first col-
umn assigns an identifier to the capability, the second
column briefly describes the capability, the third col-
umn describes which framework it was derived from,
and the last column details its context.

From this analysis, it also follows that the common-
alities of the all investigated models, i.e., the essence of
a digital twin based on its potential capabilities, con-
sist of (1) retrieving data from its counterpart (R01),
(2) sending data to its counterpart (R02), and (3) dig-
itally representing its counterpart (R04). Additional
commonalities between some of the investigated models
arise from considering requirements that at least two of
them have in common: This, for instance, includes hav-
ing a user interface (R03) and, according to [49,55], the
synchronization of properties between AS and the dig-
ital twin (R05) and its manifestation (cf. [72]). Other
commonalities (see [33,49]) include different ways of

communication, including the need for reporting in-
formation to selected recipients (R06), communication
with other digital twins (R07), and interaction possi-
bilities with third-party systems (R08). Even though
R07 and R08 are both requirements related to provid-
ing communication functionality, we made this differen-
tiation on purpose: It makes a difference if we communi-
cate with an application where we know the structure of
the software system and might influence it (white-boy
system), i.e., a digital twin created with a similar tech-
nology or using AAS, or an application, where we can
only rely on the provided APIs of a third-party system
(black-boy system), i.e., Manufacturing Execution Sys-
tems, or Enterprise-Resource-Planning Systems. More
requirements are related to the functionalities that dig-
ital twins provide: this includes the need for different
kinds of services [33,49,91] (R09) to act on data and
models (some of them including detailed examples), as
well as to explicitly describe the need for reasoning and
analytics on data [33,49] (R10). Clearly, R09 could be
broken down into more specific categories of services,
e.g., monitoring, optimization, prediction, visualization
(cf. the purposes of DTs in the systematic mapping
study on software engineering for DTs [28] or the DT
capabilities in Figure 7), however, what services a spe-
cific digital twin needs is strongly dependent on the
purpose one wants to create a digital twin for. Con-
sidering this requirement from a software architecture
perspective, all services require data and/or models as
input, process this information to gain new knowledge,
and produce an output. Therefore, we summarize them
into one higher level requirement.

5 Engineering Digital Twins with the AAS

This section explores possible methodologies for deploy-
ing each type of AAS and contrasts these approaches
with findings from earlier digital twin research. Our ob-
jective is to assess how each AAS type relates to the
requirements outlined in Section 4. We aim to pinpoint
the present status of AAS development and discover
methodologies for constructing digital twins with the
AAS. This will not only shed light on the practical ap-
plications of AAS in the engineering of digital twins but
also contribute to the broader discourse on enhancing
digital twin technology through the integration of the
AAS. The differences between the three types of AAS
from [82] are depicted in Figure 2.
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Table 1: Common Requirements for Digital Twins

Req. The digital twin. . . Sources Context

R01 (Asset
Receiving)

can receive data from its
twinned counterpart.

All This capability can have the form of automated data
flows from the twinned system to the digital twin [55,
91], dedicated data collection components [49], or data
ingestion functionalities [33].

R02 (Asset
Sending)

can send data to its twinned
counterpart.

All This capability also is foundational to all investigated
digital twin models.

R03 (GUI) has a user interface. [33,49] The form of the UI is generally underspecified [49] but
could range from basic visualizations to virtual real-
ity [33].

R04 (Repre-
senting)

can represent its counterpart
digitally.

All Either through data or models. This does not entail re-
quiring a user interface (see R03).

R05 (Syn-
chronizing)

can synchronize (selected) prop-
erties with its counterpart.

[49,55] This is vital for the definition data-flow-based definition
of digital twins [55] and made explicit by requiring a
synchronization component according to [49].

R06 (Re-
porting)

can report information to se-
lected recipients aside from the
AAS, e.g., by sending a message
to the asset’s operator.

[33,49] Using unspecified reporting capabilities [33] or a report-
ing component [49].

R07 (Twin
Communica-
tion)

can communicate with other
digital twins.

[33,49] Either through unspecified integration means [33] or a
dedicated peer interface [49].

R08 (Sys-
tem Interac-
tion)

can interact with third-party
systems e.g., a manufacturing
execution system or an ERP sys-
tem.

[33,49] This can have the form of dedicated interoperability sup-
port components [49] or of interfaces to external data
source [33].

R09 (Added
Value Ser-
vices)

provides services to act on data
and models.

[33,49,
91]

Much of the added value functionality of a digital twin is
very specific to the AS or the processes on the AS, i.e., it
can hardly be generalized. Instead, [49] and [33] propose
that digital twins yield services that realize this added
value functionality specifically tailored to their use cases.

R10 (Rea-
soning)

can reason about data
from/about the twinned coun-
terpart as well as about data
obtained from other systems
(cf. R08, R09).

[33,49] To enable various kinds of such reasoning, the different
frameworks propose specific analytics services [49,33].

5.1 Type 1 Asset Administration Shell

The need for Type 1 AAS is grounded in its file transfer
as defined by IDTA [83]. As such, Type 1 AASs exist as
serialized files, such as XML or JSON formats cf. Fig-
ure 10). Here we see the set of AASs beginning (ll. 2 ff)
and the definition of the milling machine (ll. 3-9), which
contains the attributes from the illustrative example of
Section 3 (ll. 4-7). These serialized shells encapsulate
static information and can be shared among partners
of different companies. This file distribution follows a
template12, which outlines the structural relations be-
tween the contained submodels.
12 https://industrialdigitaltwin.org/en/content-
hub/submodels

<environment xmlns="https://admin-shell.io/aas/3/0">
<assetAdministrationShells>

<assetAdministrationShell>
<id>https://www.isw.uni-stuttgart.de/halle/aas/osaca1</id>
<assetInformation>

<assetKind>milling_machine_instance1</assetKind>
<globalAssetId>https://www.isw.uni-stuttgart.de/

halle/asset/osaca1</globalAssetId>
</assetInformation>

</assetAdministrationShell>
</assetAdministrationShells>

</environment>

01
02
03
04
05
06
07
08
09
10
11
12

Fig. 10: Example XML instance of the milling machine

Considering the illustrative example from Section 3,
the CAD model, the simulation models, and models of
the milling machine are represented as submodels in the
AAS as depicted in Figure 4. Submodels can be iden-
tified by using BaSyx [52] to iterate over the relations
established between the elements of the AAS and the

https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
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linked submodels. However, BaSyx does not support
parsing these submodels. For instance, a CAD model
can be identified through the bill of materials, in which
the relations and the instances are referenced in our
example in Figure 4. Further, the bill of materials also
links the submodels of the spindle, the milling machine,
the frame, and the simulation models. Another aspect is
the connection to further AAS. These are also denoted
in submodels which contain the relation as an ID, a
description, and a value that contains the concrete ad-
dress of the server. Comparing this with the digital twin
requirements of the previous section, we notice that an
explicit service component is missing and that the phys-
ical entities are depicted as an asset without concrete
reference to the connection between the AAS and its as-
set depicted in blue in Figure 11. In general, the Type
1 AAS can be used as a knowledge base, in which a
dedicated submodel may contain relations between sub-
models. Such relations can also be noted in descriptive
files. When implementing a connection between a dig-
ital twin and Type 1 AAS, the necessary interface in-
cludes an implementation, e.g., BaSyx, to identify the
submodels. Reasoning on top of the submodels becomes
a feature that the digital twin provides. Now we look
at Table 2 and compare Type 1 AAS with the digital
twin requirements from Table 1. First and foremost, the
Type 1 AAS are serialized files without an active part.
This leads to R01, R02, and R03 being answered with
a clear no. The Type 1 AAS cannot receive data from its
twinned counterpart without an interface (R01) e.g.,
BaSyx. This also means that it cannot send data back
to its twinned counterpart (R02). There is also no ex-
plicit user interface provided off-the-shelf (R03). The
Type 1 AAS represents its counterpart digitally (R04),
e.g., the serialized files, the relations, and documenta-
tion describe static properties of the asset. It cannot
synchronize properties with its counterpart, as the data
have to be managed manually (R05). This also means
that it cannot actively report information (R06), not
actively interact with other AAS (R08), provides no
services to act on data and models (R09), and can-
not reason about data (R10). The Type 1 AAS can be
integrated with other AAS by adding information on
the relation with further shells in submodels. However
an active behavior as communicating with other AAS
is not possible (R07). In conclusion, we observe that
Type 1 AAS can be used as a knowledge base, while
the digital twin has to provide means to analyze and
reason on the knowledge.

Database and Registry

API

Asset Asset

AAS AAS

Fig. 11: Instance for a Type 2 AAS with connection
between a centralized database and AAS [39]

5.2 Type 2 Asset Administration Shell

Type 2 AAS addresses a prevalent challenge in the cur-
rent Industry 4.0 landscape: inconsistency in commu-
nication protocols between tools provided by various
providers [39]. Thus, in contrast to pure file sharing, as
with the Type 1 AAS, Type 2 AASs [10] are realized
as an executable software system e.g., on a server. To
read and write AAS files (and submodels), APIs are
provided. Such Type 2 AASs can be realized with e.g.,
Eclipse BaSyx or AASX as mentioned in Section 2.

In our example, this implies utilizing the submod-
els defined for a Type 1 AAS as the foundation for the
Type 2 AAS’s repository as illustrated in Figure 11. The
repository can for example be equipped with a REST
API [39], enabling access to a database. This database
could facilitate the retrieval of information by provid-
ing shells on top of assets. In a centralized database,
it is crucial to manage access in an industrial setting
to safeguard the confidentiality and consistency of data
and models across multiple submodels and AASs. Thus
leading to increased importance of data and model con-
sistency methods. However, another possible way to im-
plement this could be an interface that provides access
to Type 1 AAS. Typically, operations performed using
these shells include a name (the name is used as an
unique identifier for accessing the operation), a seman-
tic reference (a link to the metamodel of the operation
- in general a link to a submodel), an explanation (gen-
eral information of the operation, e.g., a textual de-
scription of the functionality of the operation), input
and output parameters. In the illustrative example, the
application of a change to the PT, specifically the spin-
dle of the milling machine, will affect the submodels of
the spindle as well as all submodels which it is refer-
enced in. To further illustrate, consider the type of the
spindle, which changes from a high precision spindle
to a low precision, high power spindle. Given the fact
that the AAS is unable to detect changes on its own,
the change of a spindle of unknown origin and type
implies the need for a manual configuration of the sub-
model. Regarding the requirements on digital twins,
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Table 2: Type 1 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset
Receiving) The serialized files require an interface to write data on them. The Type 1 AAS is used

like a file system.

R02 (Asset
Sending) The Type 1 AAS collections of related serialized files without any behavior.

R03 (GUI) There is no off-the-shelf GUI for Type 1 AASs.

R04
(Representing) The information on the asset can be stored inside the serialized files with their relations.

R05
(Synchronizing) Synchronization between AAS and asset is not included for Type 1 AASs.

R06 (Reporting) There are templates supporting specifying recipients e.g., other AAS aside from itself, in
the Type 1 AAS, but no data exchange mechanism is implemented.

R07 (Twin
Communication) The recipient specification mechanism of R06 (Reporting)could be used as the base for

any twin to twin communication. However, there is not off-the-shelf support for such.

R08 (System
Interaction) There is no active behavior in Type 1 AAS.

R09 (Added
Value Services) The interface for interacting with the AAS is implemented in BaSyx, but the Type 1 AAS

does not provide services by default.

R10 (Reasoning) Since neither R08 nor R09 is fulfilled the AAS Type 1 cannot actively reason about data
from the twinned counterpart.

The requirement is not required by IDTA
The requirement is suggested by IDTA
The requirement is defined by IDTA

similar issues are observed as in the Type 1 AAS, with
the exception of improved connectivity due to its reac-
tive nature.

Comparing the Type 2 AAS, as defined by IDTA in
the specifications [48], with the requirements for DTs
from Table 1, we observe the following (cf. Table 3).
There is a discrepancy between the specified proper-
ties a Type 2 AAS has and the actual implemented
properties. In the table, the fully filled circles represent
the specified properties, the partly filled circles repre-
sent properties which are not specified but suggested
by context, and the empty circle denote undefined re-
quirements. Section 5.4 investigates the implementa-
tions and their properties in greater detail. The core of
the Type 2 AAS according to the specifications provides
an API with create, read, update and delete operations
for managing submodels, so it can passively receive data
from the asset (R01), but it cannot actively send data
back to the asset. This means for R01, that it is ful-
filled. It is possible to propagate values to submodels
to influence the system’s behavior, but actively sending
data is not possible (R02). In general, the specification
enables a user interface (R03), but it is not specified
nor suggested by IDTA. As the Type 1 AAS is part of

Type 2 AAS, the actual system is represented digitally
(R04).

The requirements (R05- R10) depend on the func-
tionality of the actual implementation of the specified
API to realize the reactive nature of the Type 2 AAS.
We briefly discuss these requirements and provide fur-
ther insight in Section 5.4. A Type 2 AAS, by its very
nature, is unable to synchronize data between AASs.
However, the IDTA specification suggests a solution in
which a timer can be defined for data update intervals
(R05). While the specification does not explicitly ad-
dress the communication and interaction between dig-
ital twins, an integration with another Type 2 AAS is
possible and suggested, by referencing the submodels
and APIs of the AAS (R06). A reference could enable
a communication between DTs and the interaction with
other systems (R07 and R08) by using the references
a way of data access from a shared repository, as shown
in Figure 11. Since these features have to be active com-
munication, where data is sent back and forth between
DTs, the R07 and R08 are not fulfilled. In regard to the
provided services, when deploying the API as a REST-
service it is possible to provide functionalities. As spec-
ification for Type 2 AAS ends with the requirement of
an API. A service to access the API’s functionalities is



Digital Twin and the Asset Administration Shell 13

Table 3: Type 2 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset
Receiving) The Type 2 AAS is capable of passively receiving data from the Asset or multiple AAS

through an API.

R02 (Asset
Sending) The Type 2 AAS cannot actively send data to the twinned counterpart.

R03 (GUI) The Type 2 AAS requires an implementation for the API. In relation to the implementation
the API may of may not be a full user interface, which is not specified by the IDTA.

R04
(Representing) The Type 2 AAS can represent its counterpart digitally through the submodels and their

relations.

R05
(Synchronizing) The Type 2 AAS as specified by the IDTA comes with a possibility of defining a timer for

the update of data within the AAS. The active synchronization relies on implementation.

R06 (Reporting) The Type 2 AAS is also not capable of actively reporting information to selected recipients,
but through references between submodels it may propagate data to further Type 2 AAS.

R07 (Twin
Communication) The Type 2 AAS can adjust relations between properties in submodels and refer to further

Type 2 AAS submodels. Thus it cannot perform data exchanges with other DTs.

R08 (System
Interaction) The Type 2 AAS can indirectly interact with other systems by defining references to further

submodels of other AAS. Overall the Type 2 AAS cannot interact with other systems.

R09 (Added
Value Services) The Type 2 AAS provides an API for manipulating submodels. Whether these API are

sufficient enough to be a service is dependent on the actual implementation.

R10 (Reasoning) The Type 2 AAS cannot actively reason about data from the twinned counterpart, but
e.g., there can be references defined inside submodels calculating metrics for evaluating
the throughput or performance. Further the IDTA defines an option with regex queries to
reason on data. This again depends on the actual implementation.

The requirement is not required by IDTA.
The requirement is suggested by IDTA.
The requirement is defined by IDTA.

suggested by IDTA, but also (R09)dependent on the
actual implementation. Finally, the requirement for ac-
tive reasoning is suggested in the specification, where
references between submodels alongside regular expres-
sions could be used for drawing conclusions on data
(R10).

5.3 Type 3 Asset Administration Shell

As the Type 3 AAS is not yet fully specified and still
under ongoing research, we base our analysis on the
research concepts. The Type 3 Asset Administration
Shell extends the Type 2 AAS with additional features.
It has an active behavior in addition to the ability to
communicate and negotiate on its own [50,83,87]. This
means it contains data-transforming functions, can ob-
tain and transform/abstract data autonomously (e.g.,
for analyzing purposes), and is also able to act upon
the AS on its own. For this bidirectional communica-
tion with the asset, the Type 3 AAS uses a well-defined
I4.0-Language [9].

Others discuss the reactive components of a Type 3
AAS and describe a possible architecture of such a sys-
tem [45]. This architecture comprises a passive and an
active part of the AAS. The passive part is already dis-
cussed for the Type 1 and Type 2 AAS. The active part
contains algorithms managed by a component manager
and scheduled by an interaction manager. All these can
interact with the environment via a messenger compo-
nent that communicates using the I4.0 language. In this
section, we call the single algorithms together with the
interaction and component manager services. This con-
cept is then again refined by Mediavilla et al. in [62].
They describe a conceptual architecture for engineer-
ing change management with a Type 3 AAS. Here, the
AAS contains an API and again active services.

Ultimately, a Type 3 AAS contains a passive part,
already present in a Type 1 AAS and a Type 2 AAS
as well as an active part, illustrated in Figure 12. This
active part contains reactive and proactive services that
implement the autonomous behavior required by the
IDTA.



14 Jingxi Zhang et al.

Table 4: Type 3 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset
Receiving) The type3 AAS has an active communication with its asset.

R02 (Asset
Sending) Via the I4.0 language, the Type 3 AAS can send data to its asset.

R03 (GUI) With its active behavior, the Type 3 AAS could implement and host a graphical user
interface.

R04
(Representing) The type3 AAS can represent its counterpart digitally through the submodels and their

relations.

R05
(Synchronizing) Via the I4.0 language, the Type 3 AAS can send synchronizing commands to its asset.

R06 (Reporting) The Type 3 AAS comprises active components that could implement sending reporting
information via the I4.0 language.

R07 (Twin
Communication) The Type 3 AAS comprises active components and defined interfaces, so that it can com-

municate with other DTs for specific submodel purposes.

R08 (System
Interaction) The Type 3 AAS comprises active components that could implement communicating with

other systems for specific submodel purposes.

R09 (Added
Value Services) Within its active behavior, the Type 3 AAS is supposed to (autonomously) compute data,

e.g., for analysis purposes. But the extent is not defined by the IDTA.

R10 (Reasoning) Within its active behavior, the Type 3 AAS is supposed to (autonomously) compute data,
e.g., for analysis purposes. But the extent is not defined by the IDTA.

The requirement is not required by IDTA.
The requirement is suggested by IDTA.
The requirement is defined by IDTA.

Fig. 12: Active and passive part of the Type 3 AAS.
Inspired from [45]

With the Type 3 AAS extending the capabilities of
the Type 2 AAS with additional I4.0-compliant com-
munication and active behavior, we take R01 (Asset
Receiving) and R04 (Representing) as been fulfilled
by each Type 3 AAS. Therefore, we concentrate on
the requirements which were for the Type 2 AAS not
fulfilled and for digital twins required, namely require-
ments R02, R03, R07, and R08 and the already im-
plemented digital twin requirements R05, R06, R09,
R10. We refer to the reference architecture from [45], to
discuss which digital twin requirements must be fulfilled

by the Type 3 AAS and which are possible or likely
to be implemented. With the ability to autonomously
send data to its associated asset, an implementation
of the Type 3 AAS fulfills R02 (Asset Sending). This
data comes in the format, the asset is capable of pro-
cessing. In most cases, this might be control commands
to an actual system. The AAS uses the I4.0 language
to communicate with the asset. R03 (GUI) describes
that a twin needs to have a user interface. According
to [92], a user interface is an “interface that enables
information to be passed between a human user and
hardware or software components of a computer sys-
tem”. The Type 3 AAS offers an HTTP interface which
can act as a remote interface when logging in via a re-
mote console. To this point, the AAS does not require
to have a graphical user interface by itself but can pro-
duce data that can be interpreted as graphical elements.
Although, referring to the definition given in [92], the
HTTP interface together with a remote machine, inter-
preting the communication, might act as an interface,
the Type 3 AAS does not come with a GUI out-of-
the-box. Therefore, we state that R03 is possible but
not defined by the IDTA. R05 (Synchronizing) asks
for the capability to synchronize (selected) properties
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with its counterpart. Those properties therefore must
be present in the asset and in the AAS. Synchroniza-
tion goes bidirectional. With its ability to receive data
from the asset, the AAS is already capable of mirror-
ing properties and property changes in the AAS, either
by being notified or by pulling the required information.
The Type 3 AAS is capable of bidirectional communica-
tion with its asset. Therefore the AAS can send control
commands to the asset which alter the asset’s proper-
ties. A synchronization service could detect all changes
in the AAS properties to be synchronized and send ac-
cording to control commands to its asset. However, the
synchronization must be triggered, either by some AAS
functionality or by a user. Manual user synchronization
can be triggered via the user interface and autonomous
synchronization of asset properties can be done by a
monitoring service. With this, the Type 3 AAS does
not fulfill R05 out-of-the-box, but the implementation
of it is possible and very much likely to utilize its abil-
ities. R06 (Reporting) describes the ability to report
information. We already described how a service could
autonomously synchronize data with its associated as-
set. In the same manner, the Type 3 AAS can synchro-
nize reporting information with another party, either
bidirectional or only from the AAS to the reporting
recipients. So, the type 3 AAS again is not out-of-the
box capable of reporting information, but has all com-
ponents to implement such a behavior. A Type 3 AAS
is capable of an I4.0 language and at least some HTTP
interfaces. Assuming the I4.0 language is processable by
other DTs, a Type 3 AAS can communicate with other
digital twins, fulfilling R07 (Twin Communication), the
ability to communicate with other digital twins. This
communication is processed in the AAS active services
for specific submodel purposes. Other 3rd party systems
can communicate with the AAS via the HTTP interface
or the I4.0 language respectively, fulfilling R08 System
Interaction, the ability to interact with other systems.
R09 (Added Value Services) requires services to act on
data and models, while R10 (Reasoning) also requires
services to reason about data from other systems. The
architecture for a Type 3 AAS defines an active be-
havior and requires autonomous services. These act on
asset data and potentially models that are not limited
to asset data and models, but can also act and reason
on data from other systems. The IDTA does not specify
in which manner the active behavior interacts with the
asset data or models, but it is very likely that the Type
3 AAS does act on asset data and reason about it, as
the main use case in industrial environments.

In summary, our understanding is that a Type 3
AAS is capable of implementing all of the previously
derived requirements for a digital twin. With its active

autonomous behavior, it overcomes the shortcomings
of the Type 2 AAS regarding our derived digital twin
requirements.

5.4 Common Implementations of AAS

Now we look at some implementations of AAS from in-
dustry and from research to provide a broad overview
of possible functionalities in-between the specified AAS
types in Table 5. A file transfer protocol, as i.e., sup-
ported by FileZilla server 14, may be employed for the
manipulation of Type 1 AAS. In its most basic form,
the Type 1 AAS is a file stored on a local drive (R04).
This approach is compliant with the Type 1 AAS as
defined in the specification. However, as the file is un-
able to manage data in its submodels, it is not capable
of receiving data, thus not fulfilling the requirement of
being a Type 2 AAS.

The IDTA provides sample projects15 and a server16

hosting them. These projects fulfill the requirement for
the asset to be represented digitally (R04) and are in
accordance with the Type 1 AAS. However, as the file
server is also unable to manage data in its submodels,
the files are not capable of receiving data on their own,
thus not fulfilling the requirement of being a Type 2
AAS. Only in combination with the server the minimal
requirement of being a Type 2 AAS would be fulfilled.
In conclusion, both the file transfer protocol and the
sample projects, provide no further features and thus
do not fulfill any other requirements.

The BaSyx framework provides an API to interact
with the Type 1 AAS through a component called reg-
istry. The BaSyx framework further provides a database
interface to persist the state of the Type 1 AAS. The
BaSyx framework is conform to a Type 2 AAS. It is able
to receive data from the asset (R01) and represent the
asset digitally (R04). Functionalities such as sending
data to the twinned counterpart (R02), active report-
ing to a selected recipient (R06), communication and
interaction with other DTs (R07 and R08), the pro-
vision of BaSyx as a service (R09) and the reasoning
on data (R10) are open for future extensions. At this
time, two features have been incorporated into BaSyx,
which extend it from a Type 2 AAS. With the AAS Web
UI provided by the BaSyx framework a user interface
is added (R03). A DataBridge component enables a
timed synchronization between the asset and the Type
1 AAS R05. Any further functionality can be built on
14 Filezilla: https://filezilla-project.org/
15 AAS samples: https://www.admin-shell-io.com/
samples/
16 Eclipse AAS package explorer: https://github.com/
eclipse-aaspe

https://filezilla-project.org/
https://www.admin-shell-io.com/samples/
https://www.admin-shell-io.com/samples/
https://github.com/eclipse-aaspe
https://github.com/eclipse-aaspe
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Table 5: Implementations with regard to AAS specification conformness and requirement fulfillment

Reference Type 1
AAS

Type 2
AAS

Type 3
AAS

Fulfills Re-
quirements Explanation

File Trans-
fer Protocol
(FTP) sup-
ported by
FileZilla server

R04 A file transfer protocol can be treated as
a simplified Type 1 AAS. Any action has
to be done manually, thus meaning the
AAS is a passive system.

IDTA sam-
ples 13 without
AASX server

R04 The submodel templates define the inter-
nal structure of a submodel. This also in-
cludes references across submodels. Thus
a connection to other instances is also es-
tablished.

BaSyx R01, R03,
R04, R05 The BaSyx framework is a prominent API

for managing Type 1 AAS. Thus fulfilling
the condition of being a Type 2 AAS.

Research im-
plementation
by Evans et al.
in 2022[39]

R01, R04,
R05, R06,

R08
This publication focuses on the connec-
tion between AAS and a backend to per-
sistently store data of the system. Thus
automated data propagation and syn-
chronization was implemented on top of
the Type 2 AAS specifications.

Eclipse Pa-
pyrus for
Manufacturing

R01, R04 Eclipse Papyrus4Manufacturing is a mod-
eling tool for Industry 4.0 applica-
tions, which provides an integration with
BaSyx. Depending on the implementa-
tion and version of BaSyx, this tooling
also fulfills more or less requirements.

No requirements of the AAS type is fulfilled
Some requirements are fulfilled
The minimal requirements are fulfilled

top of this basis. This means that requirements for a
Type 3 AAS are partly fulfilled, while mandatory ones
such as R07 and R08 are not fulfilled. In research on
the connection between Type 2 AAS and a database
[39] the connection between the AAS and an API to
automatically store data was researched (R05). With
the involvement of multiple Type 1 AAS, connected to a
single database backend a connection to selected recip-
ients is shown (R06). Since the backend is independent
from the Type 2 AAS an interaction between Type 2
AAS and a self-developed system is shown (R08). With
the representation of the asset and the ability to receive
data from the asset R01 and R04 are fulfilled. Since
the focus does not cover the communication between
DTs, any value services or reasoning on data the re-
quirements R07, R09 and R10 are not fulfilled. Over-
all this research is a Type 2 AAS as per definition and
adds features to it. In other research [11,24,8] the fo-
cus is shifted towards the modelling of submodels inside
of the AAS with regard to the templates provided by
the IDTA. While the modelling is also an important

aspect, it remains unclear how a DT is supposed to
interact with other DTs and systems. Consequently, it
is not possible to find an answer whether our require-
ments are fulfilled. Eclipse Papyrus4Manufacturing17 is
a graphical modeling tool for industry 4.0 and provides
integration with BaSyx. Thus also fulfilling the require-
ment of being a Type 2 AAS. As this tooling is also
reliant on the implementation and specification of the
user, fulfillment of the requirements R05-R10 remain
open.

6 Challenges and Opportunities

We discuss challenges and opportunities for creating
Digital Twins using AAS and model-driven develop-
ment methods. Find more ideas on applicable methods
within the Model-Based Software Engineering Body of
Knowledge [22] and the Systems Engineering Body of
Knowledge [88].
17 Eclipse Papyrus4Manufacturing: https://eclipse.dev/
papyrus/components/manufacturing/

https://eclipse.dev/papyrus/components/manufacturing/
https://eclipse.dev/papyrus/components/manufacturing/
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6.1 Efficient Engineering of Digital Twins through
their Reuse

Digital twins are complex software artifacts that
combine data, models, and services to provide better
insights and added value on top of the twinned system.
Consequently, their engineering is challenging and
costly. With one of the main reasons for the success of
software being its reusability (e.g., classes and libraries
in-the-small, apps and containers in-the-large), digital
twins should benefit from efficient reuse mechanisms
as well. Methods for the composition of language-
independent software through superimposition [5] or
the composition of event-specific context-dependent
behavior through language constructs [6] are commonly
practiced for software. For digital twins, this is not the
case. Although recent studies claim to compose digital
twins, they commonly limit themselves to a virtual
representation [4,30].

Wherever a digital twin of a larger system (e.g., a
factory) logically consists of digital twins of smaller sys-
tems (e.g., production machinery), reusing the smaller
digital twin as part of the larger one should be as easy as
reusing existing classes in another software [67]. More-
over, digital twins of specific systems should be trans-
ferable to similar systems easily, e.g., allowing for sys-
tematic reuse (parts of) the digital twin of a sports
car of one brand with the sports car of another brand.
Through MDE methods a possibility opens of leverag-
ing existing models of a digital twin for a transfer across
the boundaries [19]. These methods focus on heteroge-
neous models, bi-directional synchronization, and the
development throughout the system life-cycle. While
also opening up new challenges such as the question
for a modeling language, an architectural framework,
inconsistency, model and data management. Currently,
neither form of reuse is supported systematically, which
is why creating digital twins still demands tremendous
handcrafting of software artifacts, which hampers the
adoption of digital twins.

Reuse for AAS is a built-in property through the use
of AAS submodels. These define the underlying data
structure and thus promise modularity and reusability.
Therefore, for Type 1 and Type 2, different AASs of
similar assets or even similar domains are built simi-
larly. However, since Type 1 and Type 2 AASs have lit-
tle or no software engineering, their development con-
sists mainly of setting the right values. Type 3 AAS
engineering consists of more sophisticated software en-
gineering that defines their active behavior. This active
behavior could be implemented, for example, by a ser-
vice that works on data consistent with the data models
of the submodels. This promises reuse of such services

for different Type 3 AASs, since the input data looks
the same. Composability of AASs from other smaller
AASs may be possible due to well-defined interfaces,
but the number of different submodels18 and possible
combinations of them, as well as their quality, make it
difficult to predict the actual engineering effort.

6.2 Low-Code Configuration for AAS

Digital twins will be largely operated and configured
by experts in the respective application domains. These
rarely have received formal software engineering train-
ing, which limits the expressiveness of technologies that
should be applied to configuring digital twins. Using
low-code development platforms or low-code develop-
ment approaches [32] for digital twin engineering can
enable domain experts to create, configure, and oper-
ate tailored digital twins for their specific domain of in-
terest [27] using their domain expertise, concepts, and
terminology.

Similar approaches could be applied to ease the use
of AAS to develop digital twins. This includes, e.g., (1)
low-code interfaces to create, access, and reason over
submodels, (2) libraries for submodels supporting easy
reuse, (3) support for automated deployment of digi-
tal twins based on AAS technologies, and (4) low-code
modeling languages that enable orchestrating the ser-
vices used by the digital twins. Moreover, if specific ap-
plication domains select specific sets of AAS submodels
and services that might be relevant for them, one could
place a low-code configuration layer on top that enables
the tailoring for specific use cases on a higher level of
abstraction.

As these parts of AAS are technology depen-
dent, the low-code development platforms have to
be tailored towards specific technologies currently
developed for AAS, e.g.,, the BaSyx framework, and
other frameworks to be developed in the future.
Establishing standards and standardized interfaces will
help making low-code development platforms more
technology-independent.

In addition, the concrete application domain may
also have different requirements for a low-code plat-
form coming from possible users, e.g., which level of
abstraction has to be provided for the intended users
when describing configuration information. This covers
the whole spectrum from (1) the type of representa-
tion, e.g., text-based approaches, graphical interfaces,
or wizards, (2) different levels of knowledge, e.g., do-
main experts covering a broad spectrum of information
18 https://industrialdigitaltwin.org/en/content-
hub/submodels
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about an asset to niche knowledge for a particular part
of the asset, and (3) the depth of technology under-
standing, e.g., without software engineering skills up to
software engineering experts. Thus, low-code develop-
ment platforms have to be tailored for their intended
AAS user groups.

Such low-code development platforms could either
be developed as open-source, e.g., BESSER [3], or in-
house if companies create digital twins for themselves
regularly or sell them to customers. However, their core
development will be easier if more AAS aspects are
standardized, especially services to be used within Type
3 AASs and their communication interfaces within a
digital twin implementation.

6.3 Derivation of AAS Digital Twins from engineering
models

In manufacturing, a lot of information that would be in-
teresting for digital twin creation with AAS, is already
created during, e.g., the engineering process of produc-
tion machines, factory planning, and process planning
(cf. “Representing Systems with Models” in the Sys-
tems Engineering Body of Knowledge [88]). With the
SysML v2 release, it is also to be expected that more
systems engineering models will be available in an inter-
changeable format within the next few years. Reusing
this information would be helpful for engineering digital
twins [23]. This requires extraction of the information
from these engineering models into information needed
in submodels. This transformation could be improved
by reusing the information already provided and stan-
dardized in submodels, as they could parametrize this
transformation.

Moreover, up to now, it is unclear how information
during runtime of an asset could be brought back to
the development process of the asset [26] using AAS
technologies. This requires adding a methodology and
tools on top which enable the analysis of information
relevant to improving the development. As the realiza-
tion of type 3 AAS is planned, such mechanisms could
be integrated in the active part as algorithms. However,
reuse of these functionalities is not considered if they
are to be realized newly for every AAS.

There exists a large MDE body of knowledge on
models@runtime [20,13] which is specifically of inter-
est for AAS Type 2 and Type 3. Models@runtime ap-
proaches can support the bi-directional synchronization
between digital twins and their counterparts [17]. While
different types of runtime models [13], e.g., structure,
behavior, quality, goal, requirements models, could be
of interest for digital twins developed with AAS tech-

nologies, concrete examples, and their implementations
are missing.

6.4 Communication between AASs

When it comes to connections between different digi-
tal twins, open challenges still remain [68], e.g., how
digital twins on different levels of details can be inte-
grated or can exchange information on different lev-
els of granularity. It still requires manual effort to map
and integrate information between different levels. This
problem arises in particular with AAS, as they claim to
represent an AS over its entire life cycle, which con-
sequently results in integration challenges when own-
ership of an AS is transferred from one party to an-
other [41].

Semantic challenges, such as inconsistencies, could
be solved by using standardized submodels [39]. How-
ever, this might not be possible in all cases, as this
requires forcing a certain view of the world on each ap-
plication domain. Thus, mechanisms for translating or
linking information from different submodels might be
a more sensible way to go.

The technical connection between the AASs for
type 2 AAS is, depending on the type 2 interpretation,
based on established technologies, primarily REST via
HTTP(S) and Open Platform Communication Unified
Architecture (OPC UA) or is implemented in propri-
etary interfaces OPC UA is used in particular to drive
convergence between Information Technology (IT) and
Operational Technology (OT) systems and to ensure
interoperability in manufacturing [74]. Standardized,
Industry 4.0-compliant communication is part of type
3 AAS [83], a specification is pending.

6.5 Non-functional requirements and the AAS

One limitation of our analysis of requirements is that it
is purely based on functional requirements. This is due
to two reasons: The existing approaches rarely men-
tion non-functional requirements (e.g., [34] mentions
privacy, security, safety, resilience, and reliability), and
such requirements are strongly connected to the appli-
cation domain, i.e., safety-critical domains require dif-
ferent aspects in their digital twins than other domains.
This also includes the question of how to handle incon-
sistency or similarity. When creating digital twins for
complex cyber-physical systems, we have to cope with
the inconsistent behavior of these assets. There exist
approaches for the explicit representation and treat-
ment of uncertainty [31], that require uncertainty-aware
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controlling components in the digital twin. Other ap-
proaches enable us to measure the similarity between
an asset and its digital twin [70].

MDE tackles some of these non-functional require-
ments [18], e.g., uncertainty modeling integrated in the
digital twin development to explicitly cover it in the de-
sign phase, or the ability to integrate evolved asset in-
formation in the form of models. With the various sub-
models 19 regarding different non-functional require-
ments like Functional Safety, Security Engineering, Re-
liability, Maintenance, or ecological Carbon Footprint,
the AAS covers the means to support storing informa-
tion needed for fulfilling some of the non-functional re-
quirements stated. However, how this data is used and
played back to the actual system in an, e.g., Type 3
AAS, remains to be defined and is up to the developer
for now.

6.6 Evolvement of the actual system and the AAS

Engineering models, models@runtime and the asset we
are creating a digital twin for could evolve. Thus, ap-
proaches for digital twin evolution need to be devel-
oped [65,29] and adapted for digital twins we are creat-
ing with AASs. Currently, new submodel templates are
developed which are a conservative extension of existing
AAS submodels. Thus, for Type 1 AAS rather values in
submodels are changing based on the changing reality.
For Type 2 and Type 3, it could also affect the connec-
tion to the actual system and its control interfaces. If
the Type 3 AAS autonomously computes data, e.g., for
analysis purposes, depending on the requirements for
this analysis the need for data might also change over
time.

There exists a variety of MDE approaches to
support system evolvement, e.g., for (meta-)model
evolution, software migration, software reuse, and to
check correctness and consistency during and after
model evolution. However, approaches for the co-
evolution of AAS across multiple meta-levels including
its submodels, models, and data are to be researched.
Here, collaborating with researchers from data and
process modeling [64] would be helpful to integrate
MDE methods with methods from data and process
engineering. In addition, the evolution of AAS services
with models, and their data is a challenging open
research aspect.
19 https://industrialdigitaltwin.org/en/content-
hub/submodels

7 Related Work

A systematic literature review analyzing the character-
istics of current implementations of AAS includes pa-
pers published in English on Scopus between 2017 and
2021 identifies specific implementations of the AAS in
29 of the 45 analyzed publications [1]. The authors com-
pare the usage of the terms AAS and digital twin in
these 29 papers and found that 19 of the papers did not
contain any statements on this. Out of the remaining
10 papers, 5 consider AAS and digital twin being syn-
onymous terms, 3 publications consider the AAS as a
concrete implementation of a digital, and 2 publications
consider the AAS as the information model of a digital
twin. A more detailed resolution, i.e., based on crite-
ria, is not provided. Others investigate how data-driven
approaches, e.g., machine and deep learning models,
can be used for predictive maintenance in the industry,
especially the automotive domain, and how they can
be integrated into a digital twin represented using the
AAS [84]. The study focuses on a medium-duty hydro-
gen truck, where six submodels are defined to support
the predictive maintenance pipeline and four services
use them, namely feature extraction, training, predic-
tion, and maintenance.

Other research compares the expressiveness of a dig-
ital twin description framework with the expressiveness
of the AAS [76]. The description framework describes
digital twins through their usages, enablers, and mod-
els, where models are the information that enablers use
to support certain usages. The description framework
distinguishes 12 characteristics, including support for
representing the system-under-study, the data to be
transmitted, timing information, fidelity of the digital
twin, life-cycle information, and more. For each char-
acteristic, the authors investigate how Type 1 AASs
enable their respective representation out-of-the-box.
From this, the authors conclude that the AAS sup-
ports four characteristics fully, four partially, four im-
plicitly, and two not at all (e.g., "fidelity considera-
tions" are unsupported). However, as the AAS gen-
erally is a container that can be populated with dif-
ferent submodels (cf. Section 3), the expressiveness of
an AAS depends on the submodels used. For instance,
if a submodel capturing fidelity information becomes
available, the corresponding characteristics of the de-
scription framework might become expressible with an
AAS. Consequently, that study must be understood as
a snapshot of the expressiveness of AASs relative to
available submodels at the time of the analysis. Another
study compares the ease of implementation of Type 2
AASs using BaSyx [52] and Eclipse AASX. Based on
on their qualitative, anecdotal, observations, they con-

https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
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a) Type 1 AAS b) Type 2 AAS c) Type 3 AAS

Fig. 13: The different types of asset administration shells cover different parts of digital twins (the DT represen-
tation is based on the 5D model by [91])

clude that the technologies are sufficiently accessible
and mature enough to facilitate the implementation of
Type 2 AASs [102]. Others compare the communication
in the AASX and Eclipse BaSyx server implementation
and show challenges related to the pulling of informa-
tion [39]. The analysis proposes the realization of Type
2 AASs with an event-based server to enable seamless
orchestration and deployment.

A systematic literature review [2] considers and
analyses the research on AASs in relation to man-
ufacturing systems. The result is an evaluation of
the emerging practical uses of AAS implementations
within production systems. This review noticed the
overlapping definitions between AASs and digital
twins with a relationship that is not clearly defined.
Further gaps emerge for AASs for simulation models
and AAS for bidirectional data exchange between AAS
and its asset. Other researchers employ Type 1 AASs
as a knowledge base of implementations of digital
twins [103], which is an obvious use of AASs for digital
twins.

Further research [78] discusses the virtual represen-
tation of assets in an AASs using smart factory technol-
ogy as an example. Their contribution consists of the
distinction of four requirements for an asset for virtual
representations. These requirements are

1. Provision of efficient information for creating a DT
automatically with a library containing the config-
uration.

2. Vertical integration, which represents the character-
istic that the DT can be operated and integrated
based on one virtual representation from the asset
layer at the bottom to the enterprise layer at the
top.

3. Horizontal coordination represents the coordination
between the DT and engineering applications i.e.,
services.

4. The DT should derive performance indicators re-
peatedly with simulation, which is the core technical
functionality of the DT.

The study includes applications to industrial vehicle
production lines and a smart factory for producing sam-
ples and small-sized components using additive manu-
facturing. Here, the digital twin is treated in the form
of a virtual factory technology with simulation as its
core technical functionality. This limits their research
into creating a definition of an asset without going into
detail on the surrounding system and how the data is
transferred between AAS and machine or simulation.

Others propose a high-level structured framework
of eight steps for creating AASs in production envi-
ronments [85] and evaluate this on the production of
distributed high-rate electrolyzer. These steps include
deriving requirements, selecting assets, and creating the
AAS with properties chosen according to existing stan-
dards. The goal is to guide the development of digital
twins by constructing an AAS. In this work, the digi-
tal twin (technologies) are used to structure the digital
representation of a distributed manufacturing systems,
i.e., they do not require any active behavior. In particu-
lar, the developed then AAS follows a Type 1 classifica-
tion, emphasizing basic digital representations without
active behavior.

Further research investigates using the concepts of
AAS on the example of the life cycle of a plant [97].
The authors do not provide a concrete implementa-
tion, but some high-level suggestions for device man-
ufacturers, system integrators, plant owners, and In-
dustry 4.0 architects, e.g., which parts they have to
realize themselves and which parts are provided by the
AAS. The authors also discuss the conceptual overlap
between digital twins and AAS. They follow a defini-
tion of digital twin mainly based on the one given by
NASA as a simulation of a physical system enriched
with sensor data [89]. They find the overlap of digital
twins and AASs in similar concepts around semantic
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specifications of the physical system. Thus, the authors
state that a fully developed digital twin in the future
can be used synonymously for an AAS. The described
AAS follows a Type 1 classification without active be-
havior.

8 Conclusion

Both, the Asset Administration Shell and digital twins
are concepts aiming to foster the digital transformation.
Where the digital twin is understood wildly differently
in general, the most prominent definitions and novel
standards seem to suggest them being complex soft-
ware systems that monitor a twinned system, reason
about this, and send back commands. As such, imple-
mentations of digital twins could be AASs.

We examined the question of whether and to which
extent the AAS meets the requirements of digital twins
based on popular definitions, standards, and models.
We found no simple answer to this question as it is
much more dependent on the assumed AAS type, as
illustrated in Fig. 13: There is only a slight congruence
between the type 1 AAS and digital twins, which lies
in understanding the AAS as the knowledge base of the
digital twin, covering virtual models and data about,
but not from the actual system. Type 2 AASs extend
that to resemble an infrastructure for digital shadows
over static models of the actual system. Type 2 AASs,
cover not only virtual models, but also data from and
about the actual system. Literature and reference im-
plementations on the type 3 AAS indicate that a type 3
AAS, which shall be able to send commands back to a
connected system, could indeed be nearly complete im-
plementation technology for digital twins in the sense of
the requirements identified in this paper. Type 3 AASs
extend the type 2 AASs to include services about the
actual system. However, with the specification of type
3 AAS still ongoing, future work has to revisit this as-
sumption.
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