
Digital Twins in Manufacturing and the Use of Models
Alexander Hellwig1,∗,†, Judith Michael1,2,†, Jérôme Pfeiffer3,†, Bernhard Rumpe1,†,
Henrik Thillmann1,† and Andreas Wortmann3,†

1Software Engineering, RWTH Aachen University, Germany
2Programming and Software Engineering, University of Regensburg, Regensburg, Germany
3Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Stuttgart, Germany

Abstract
While models and digital twins are heavily related, how we use these models, how we understand those models,
and even what these models represent for digital twins might change over time. Existing research provides model
classifications from different angles, e.g., kind of usage, model content, nature of abstraction; however, a common
understanding of which kinds of models could be useful and are used in digital twin engineering and during its
lifetime is missing. In this work, we present an initial faceted classification to label models based on different
properties relevant for digital twins in manufacturing. We show the application of the classification on different
models of a digital twin in manufacturing. The classification can make finding and reusing models in and for
digital twins easier, help to identify information gaps, and give inspiration about how models might change their
purpose and nature over time.

Keywords
Digital Twin, Model Classification, Manufacturing, Cyber-physical Systems

1. Introduction

Digital Twins (DTs), as a software system representing an original system [1, 2], and the concept model
are strongly related [3]: We can use models to represent the original system [4, 5, 6] and to derive and
run the DT [7, 8]. What kinds of models are used at which point in time to represent which information,
however, heavily rely on various factors, e.g., the different backgrounds of the engineers developing
DTs [9, 10], the different application domains, the life-cycle phase when a model is used [3], and many
more. This makes it challenging to reuse or adapt existing models effectively and to assess the model’s
relevance and validity as the digital twin evolves.

Up to now, no commonly used taxonomy or classification of models exists that can be used for the
engineering of or in a running digital twin. Several works aim to classify models, e.g., Boyes and
Watson [11] distinguish between different kinds of data models and physical entity models, Eramo et
al. [12] distinguish between three types of purposes of models, or the Software Engineering Body of
Knowledge (SWEBoK) [13] distinguishes three types based on the model content. The classification of
a model, however, can change over time, e.g., a model describing the structure of a production machine
during development can also be used to analyze the degradation over time during operation [14]. Hence,
taxonomies, as hierarchical classifications, are not always suitable for models: not only might the
model’s purpose and how it is used change, but also the information and level of abstraction it considers
could encompass a combination of different properties.

To cope with multidimensionality, we need a faceted classification [15, 16] of models in the life cycle
of digital twins: Faceted classification is a way of classifying objects not into inflexible, hierarchical tree

ER2025: Companion Proceedings of the 44th International Conference on Conceptual Modeling: Industrial Track, ER Forum, 8th
SCME, Doctoral Consortium, Tutorials, Project Exhibitions, Posters and Demos, October 20-23, 2025, Poitiers, France
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open hellwig@se-rwth.de (A. Hellwig); judith.michael@ur.de (J. Michael); jerome.pfeiffer@isw.uni-stuttgart.de (J. Pfeiffer);
rumpe@se-rwth.de (B. Rumpe); thillmann@se-rwth.de (H. Thillmann); andreas.wortmann@isw.uni-stuttgart.de
(A. Wortmann)
Orcid 0009-0001-1698-4054 (A. Hellwig); 0000-0002-4999-2544 (J. Michael); 0000-0002-8953-1064 (J. Pfeiffer);
0000-0002-2147-1966 (B. Rumpe); 0009-0002-9001-0028 (H. Thillmann); 0000-0003-3534-253X (A. Wortmann)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:hellwig@se-rwth.de
mailto:judith.michael@ur.de
mailto:jerome.pfeiffer@isw.uni-stuttgart.de
mailto:rumpe@se-rwth.de
mailto:thillmann@se-rwth.de
mailto:andreas.wortmann@isw.uni-stuttgart.de
https://orcid.org/0009-0001-1698-4054
https://orcid.org/0000-0002-4999-2544
https://orcid.org/0000-0002-8953-1064
https://orcid.org/0000-0002-2147-1966
https://orcid.org/0009-0002-9001-0028
https://orcid.org/0000-0003-3534-253X
https://creativecommons.org/licenses/by/4.0/deed.en


structures, but one can link them to many different facets and their concrete manifestations called foci.
For instance, a model can include structure and behavior information of a system under study, resulting
in adding the foci structure and behavior; this can also be seen as some sort of labeling. One facet can
have several foci, one foci belongs to one facet, and the foci of a facet can have a hierarchical structure,
but do not have to. To an object, foci of several facets can be assigned (polyhierarchical classification
system). We can assign several foci of a facet to an object (polydimensional usage of the classification).
The classification of an object results from the combination of the assigned foci.

In this paper, we aim to answer the question of what kinds of classifications of models are relevant for
DTs in manufacturing. This includes the questions of which model classifications are relevant for the
engineering of DTs and which model classifications are rather important during runtime of a digital
twin. Thus, we have analyzed commonly used classifications for models that are relevant for DTs and
integrated them into a faceted classification grouped into facets and below their foci. We validated
the faceted classification using examples from cyber-physical systems (CPSs) in manufacturing and
discussed possible extensions in the future.
Structure: Sec. 2 explains related work for model classifications. Sec. 3 presents our suggestions for

classification facets and their foci. Sec. 4 describes some case studies and their model classification.
Sec. 5 discusses our method and results. Sec. 6 concludes by discussing the research agenda to move on
with this new idea.

2. Related Work on Model Classifications

Models are classified based on various properties in the literature. Models can be classified based on
the extensibility [17, 18, 19] or formality [18, 17] of the modeling language they conform to. Besides, in
model-driven architecture [20], models are classified based on their level of abstraction, ranging from
computation-independent to computation-specific models.

Another possible classification is based on the model type. This can be a rather high-level cate-
gorization into behavior and structural models [13, 18, 21], e.g., in UML or by Lehner et al. [22] in a
more detailed classification that is conceived in a systematic mapping study investigating different
model-driven engineering (MDE) techniques for DTs. The study differentiates architecture models,
continuous behavior models, discrete behavior models, data models, ontology models, and UI models.
Tao et al. [23] differentiates models into four dimensions: geometry, physics, behavior, and rule.

One important aspect of the usefulness of models is based on their executability. Executability can
be achieved by interpreting and simulating models [18, 22], by transforming a set of source models into
a set of target models to enable the composition of different views [18, 22], or by generating executable
code [22].

Eramo et al. [12] investigate the purpose of the model in the twin. They classify models into
descriptive models representing current or past information, predictive models that serve to understand
and analyze the (potential) future of the system, and prescriptive models that serve to control the future
behavior of the actual system.

Although a list of domains where models play a role in the creation of DTs is necessarily incomplete,
prominent ones include manufacturing, energy, aerospace, business or healthcare [23]. Such lists are
typically compiled in literature surveys or mapping studies about DTs [24].

In MDE [25] models are defined based on the properties introduced by Stachowiak [4], assuming
that a model has an original, that it is an abstraction of this original, and the model fulfills a purpose
with respect to the original. Besides, MDE categorizes models into two categories: (1) models that
describe the internals of the software system itself, e.g., its software architecture, and (2) models that
describe their interaction with the environment, that, e.g., the production plant to be controlled or
monitored. Furthermore, models can be classified along their notation, which can be either textual or
graphical [18, 26] or projectional [27].

Boyes andWatson [11] investigate the functional components of DTs and splits these components into
four categories with several subcategories, which will be further discussed in Sec. 3. These categories



are (1) Digital Coupling (2) Digital Representation (3) Tools (4) Functional Output.
Another work [26] does not offer a structured overview over model categories, but some dimensions,

along which models can be distinguished, as well as listing specific types of models, i.e., whether a
models is based on a formalism, is a physical or abstract model, whether it is descriptive or analytical,
or whether it is domain specific or general purpose.

Finally, in practice, models are used in different life cycle phases of the actual system and the
DT [3, 28], and, hence, models can be classified along these phases, i.e., requirements analysis, design,
implementation, test, release, and operate (including maintenance).

3. A Faceted Classification for Digital Twin Models

We present our faceted classification for DT models whereas each classification is based on related
model categories from the literature presented in Sec. 2. The origins of the foci are listed after each
facet name. For each classification, we describe its foci together with an example demonstrating in
which cases they are applicable to a model. The more detailed mapping can be found at our companion
website [29].

Purpose : Models may serve different purposes[12] for the user.

• Descriptive models, representing current or past information about the system (and maybe its
environment) to enable analyzing it, e.g. geometry models [30].

• Predictive models, serve to understand and analyze the (potential) future of the system. Typical
uses cases include predictive maintenance or what-if analyses, e.g. with simulation models [31],
or diagnosis models [2].

• Prescriptive models, serve to control the future behavior of the actual system. In contrast to a
predictive model about, e.g., predictive maintenance, the prescriptive model controls how to
initiate that maintenance. This includes models for optimization [23] as well as actuation [32].

Type: The type of a model [22] describes the subject that is described by the model. On an abstract
level, we differentiate between models that describe structure or behavior.

• Structure

– Architecture model, applies to models that describe the communication streams between
different software systems. An example are SysML part definitions or MontiArc models.

– Data model , applies to models that represent the structure of data that is emitted or received
by physical or software systems. Examples for data models are AutomationML or the Asset
Administration Shell.

– Ontology model, applies to models that describe knowledge represented via structure and
rules. Examples for ontologymodels are theWebOntology Language (OWL) andOntological
Modeling Language (OML).

• Behavior

– Discrete behavior model, applies to models that provide information about the discrete
behavior of a physical or software system. Examples are SysML state machines models or
BPMN.

– Continuous behavior model, applies to models that describes the contiuous behavior of a
physical or software system. Examples for this type of models are Simulink and Modelica
models.



Executability: Executability [17, 18, 19] of a model refers to the ability to simulate or run the model
to observe its behavior over time without needing to implement it in code first.

• Not executable, applies if a model is not executable. An example are UML class diagrams that do
not have a formally defined semantic and, hence, cannot be executed.

• Interpreted , applies to models that are directly processed by a tool without translation. This
applies, for example, to Simulink or workflow models.

• Transformed , applies to models that are translated to another kind of model or to code. An
example could be an UML activity diagram that is transformed into Java.

Notation: The notation [18, 26, 27] describes how the modeler interacts with the model.

• Textual: The model is described in text form. A lexer and parser are then used to create the
abstract syntax tree (AST), making the content processable by a computer.

• Graphical: The AST of the model can be manipulated via a graphical representation, such as
diagrams.

• Projectional, if the AST is indirectly edited through different projections of the model. E.g., if
parts of the model are edited via a table and other parts are graphical.

Modeled subject: Different parts of the overarching system –composed of a Actual System (AS), a
DT, the connection between them, and the connection to the physical environment –can be subjects of
the model [11, 25].

• Software, applies if the software of the system is modeled, e.g., the DT or the control part of the
CPS.

• Hardware, applies if the model describes the hardware, such as a CAD model of the AS.

• Interaction between AS and DT, applies if the synchronization between hardware and software is
modeled, for example, a model of the protocol between the control software and a programmable
logic controller.

• Interaction with the environment , applies if the interaction with the physical environment is
modeled, e.g., descriptions of the sensors or actuators.

Functional aspect: The different functional components of a DT described in [11] can be the subject
of a model. A faceted categorization of models along this axis can help find aspects of the DT that are
not yet modeled.
Digital Coupling, if the model pertains to transfer of state data from the AS to the DT.

• AS state, if the model relates to the state of the AS

• Communication, if it models the connection between DT and AS

• State data handling, if it models the transformation of AS state data for use in the DT

• Twinning, if it models the push or pull of state data or the rate of data sync

• Protocols, if it models the protocols used for digital coupling of the two systems

Digital Representation, if the model describes a representation or data of the AS.

• Data model, if it models data structure used in the DT



• Operational data storage, it models data storage for the operation, condition, and use of the AS

• Master & reference data1, if it models data to configure models of the AS

• Physical entity models, if it models the physical state during, or process of, the operation of the AS

• Temporal, if it models changing performance or data granularity over time

Tools, if a tool for decision making for the AS is modeled

• Analysis, if it models an analysis of the AS

• Simulation, if it models a simulation of the AS

• Presentation, if it models the presentation of analysis or simulation results

Functional output: Models describing the output of the DT to actors in the system, such as operators or
other systems.

• Digital twin output , if it models the output of the DT to be used by an operator, the AS, or other
system.

• Configuration & control, if it models by who or how the behavior of the DT can be changed

• User interface, if the interaction with an operator is modeled, e.g., models of a GUI

Level of abstraction: Models may describe the DT or the AS at different levels of abstraction [20].

• Computation-independent model (CIM), describe the business context and requirements of the
system without considering how the system will be implemented. An example can be Use Case
models that describes the requirements and potential interactions with a DT.

• Platform-independent model (PIM), describes the system’s structure and functionality without
specifying the technology platform. A typical example are class diagrams, that model the designed
system architecture.

• Platform-specific model (PSM), enriches the PIM with platform-specific information, such that it
can be implemented. This could be, for example, a Java class implementing the class diagram
described in the PIM.

Domain: The wide range of domains [33, 34, 23] in which DTs are applied makes any list inherently
incomplete. Notable disciplines include mechanics, electricity, civil engineering, chemistry, hydraulics,
kinematics or material science. Models from those disciplines can be used in DTs for application fields
such as manufacturing, energy, aerospace, business, engineering construction or healthcare [33]. Some
types of models used in DTs are domain-specific, while others have more universal applicability. The
models can be used to represent entities ranging from injection molding machines [34], over valves, to
hearts [23].

Life cycle phase: Both the DT and the AS go through different life cycle phases [35] from the
inception of the system to its eventual shutdown. Since the life cycles of the twins are not necessarily
synchronized, e.g., a simulation of the AS can be used in the DT long before the physical part is deployed,
we define facets for each of the twins. Each of the facets can be applied if the model is used during the
corresponding life cycle phase. For the AS these phases are considered: (1) AS Design (2) AS Construction
(3) AS Operation (4) AS End-of-life. The DT goes through the phases: (1) DT Requirement analysis (2) DT
Design (3) DT Construction (4) DT Test (5) DT Release (6) DT Operation.

The way models are created and used during a project is influenced by the features of the language
itself. In UML and SysML it is commonplace to customize the language to the problem at hand by
defining profiles, while other languages do not support customization.
1Refers to the meta level, i.e., models that describe or configure other models of the asset.



Extensibility: Extensibility [17, 18, 19] expresses the degree to which the employed modeling lan-
guage are extensible.

• Extensible, applies if a modeling language is extensible. For general purpose languages, e.g.,
SysML, UML, this can be enabled by stereotypes, or for domain-specific languages (DSLs) this is
possible via composition operators [19], e.g., embedding.

• Not extensible, applies if a modeling language is not extensible. For instance, OPC UA [36] is a
standardized language that has no extension mechanism.

Formality: The formality [18, 17] of a modeling language refers to the degree to which its syntax and
semantics [37] are precisely defined, typically using mathematical or logical foundations. A formally
defined modeling language allows unambiguous interpretation and rigorous analysis, whereas informal
ones rely more on natural language and are open to interpretation.

• Formally defined syntax , applies if a language provides a metamodel or grammar that specifies its
syntax. An example for a modeling language with formally defined syntax is UML that uses MOF
(Meta Object Facility) to describe its metamodel.

• Formally defined semantics, applies when a language specifies its semantics formally, operationally
or mathematically. An example is Z that is based on set theory and first-order predicate logic,
with both its syntax and semantics rigorously defined using mathematical constructs.

• Informal , applies if a language is not defined formally. For instance, altough, BPMN a standardized
visual syntax, its semantics—especially for complex behaviors—are not fully mathematically
defined, leading to potential ambiguities in interpretation and implementation.

4. Case studies

This section applies our classification to two real-world case studies from the manufacturing domain
and demonstrates its usefulness and applicability. The models of two case studies were classified
with the categories presented in Sec. 3 and result of this classification can be found at our companion
website [29]. In the following, we present a subset of this classification and how models of the actual
system and the digital twin can switch their foci based on the life cycle.

4.1. Application of the classification

4.1.1. Fischertechnik

Using a model-driven DevOps approach, a mock production line and accompanying DT are devel-
oped [38]. It consists of a sorting line, which sorts tokens by color, a conveyor belt, which is used
as an input buffer, and a multi-processing station, which applies a hardening and milling step to the
workpiece. Two vacuum gripper robots are used to move the tokens between all other machines, and
the output is stored in a high bay storage. The digital twin of this system keeps track of the inventory,
all production steps performed on each workpiece, and the state of all machines. Additionally, an
optimization service increases the throughput of the production line , and a predictive maintenance
service schedules replacement of mill tools as well as maintenance of the vacuum grippers. All services
are accessible to the operators through a dashboard.

Class diagram A MontiCore class diagram is used to analyze the data structure of the domain,
manufacturing, during the AS design life cycle phase. The model is extensible through the application
of stereotypes to model elements, but the base language has defined semantics, defined as the set of
all conforming object structures [21]. The language notation is textual and the models are executable
by transformation into Java code via a generator. During analysis, the model is descriptive of the



data and relationships between the hardware, software, environment, and other actors. It is also a
Computation-Independent Model, since the implementation and platform are considered during initial
analysis.

MontiArc MontiArc component & connector diagrams are used to model the functional architecture
of the production line, by hierarchically decomposing the top-level components. Thus, this model is
used during the AS design live cycle phase and is prescriptive for the engineered system. The language
has a textual notation and is extensible, which allows for adaptation to the use case using MontiCores
language composition operators. FOCUS [39] defines the semantics of MontiArc, which can be used to
execute the models via transformation. Since the functions describe the full CPS, the modeled subjects
are hardware, software, and interaction with the environment. The models belong to the domain of
manufacturing, since a production line is modeled, and are platform independent, as the implementation
technologies and platform are not specified.

Statecharts To model the discrete behavior of the machines and controllers of the production line,
MontiCore Statechart models are used during the AS design life cycle phase. Since the same language
workbench is used for MontiArc and Statecharts, they share some facets: The modeling language is also
extensible, has a textual notation, and can be executed through transformation to Java code. Also, the
domain manufacturing stays unchanged. The models are prescriptive of the behavior of the machines
during operation and have defined semantics through automata theory. The model has multiple subjects:
the states of hardware and software are described, and the stimuli of the transitions have their origin
within the system as well as from the interaction with the environment. The models depend on the
concrete machines used and thus are platform dependent.

4.1.2. Five-X

The second case study of our classification is based on the Five-X [40], a drilling machine that possesses
five degrees of freedom and a tool changer with multiple milling tools for different materials. With the
Five-X, we realize a predictive maintenance use case for our DT, where, based on its use, the hardware
tool is changed automatically.

Asset Administration Shell In the context of the Five-X, asset administration shell (AAS) models
are used for storing technical properties, e.g., hardware interface, how the machine is constructed, and
relevant documentation. During operation, the AAS stores attributes like energy consumption and the
wear index of the connected tool. The language of AAS is neither extensible nor formally defined. AAS
models can be classified as data models since they store static information, although the referenced
models within the AAS, of course, can be of other types, too. AAS models are interpreted and can
be formulated both textually and graphically, e.g., with Eclipse BaSyx [41]. Concerning the modeled
subject, the AAS models properties of the hardware in our case. The purpose is to prescriptively describe
the operational data of the AS. In our case, it models the subject hardware. Regarding the level of
abstraction, our AAS model is at the level of a platform-specific model.

Simulation models For the virtual commissioning of the Five-X, we employ the virtual commission-
ing tool ISG virtuos, which utilizes a 3D model with kinematics based on a CAD import and a block
diagram describing the machine’s behavior. The language describing the 3D model is neither extensible
nor formally defined. The model’s type is data, and it is executed by the simulation tool. For the DT
it describes a simulation of the AS and a description of the physical entities. Since it is a visual 3D
model, its notation is graphical. During operation, the model is synchronized with the AS acting as a
descriptive model. The modeled subject is the hardware of the machine. Since the model is contained
in the tool environment of Virtuos, it is a platform-specific model.

The language of the block diagrams is also not extensible and not formally expressed. The models
are interpreted by virtuos and describe discrete behavior. It accompanies the 3D model and, hence, also



describes the simulation and the physical entity. It is also defined graphically and is a descriptive model
of the AS. Like the 3D model the modeled subject is hardware, and since it is defined within Virtuos
itself, it is also platform-specific.

OPC UA OPC UA describes the communication interface provided by the AS to the DT. The language
itself is defined by a standard document; hence, it is not formally defined and is not extensible. OPC
UA models are interpreted and describe the communication aspect of the DT. Depending on the editor,
OPC UA can be edited in graphical or textual notation. OPC UA models have a descriptive purpose
by modeling the interaction with the AS. The domain of this language is manufacturing. Concerning
the level of abstraction of OPC UA models, they depend on the underlying system and are, thus,
platform-specific models.

4.2. Changing foci in the system life cycle

Over time, the foci related to models could change. In the following, we provide some practical examples
of how these changes could appear.

4.2.1. Fischertechnik

Digital Twin BPMN

structure

behavior

EIS

extensible textual

prescriptive

software

Digital Twin GUI-Model

defined syntax 

& semantics

user interface

PIM

transformed

Actual System OCL/PActual System CD4Analysis

Actual System MontiArc Actual System MC Statechart

Actual System

structure

manufacturing

extensible textual

prescriptive
defined 

semantics

coupling, tools

PIM

transformed

defined 

semantics

extensible

data model

coupling,

digital representation,

tools

textual

descriptive

hardware, 

software, env. 

interaction

manufacturing

CIM

transformed

digital representation,

tools

PSM

hardware, 

software

extensible

defined 

semantics

data model

textual

prescriptive

manufacturing

transformed,

interpreted

descrete

behavior

manufacturing

extensible textual

prescriptive
defined 

semantics

coupling, tools

PSM

transformed

discrete 

behavior

manufacturing

non 

extensible
graphical

prescriptiveinformal

coupling, tools, 

functional output
PSM

interpreted
hardware, 

software, env. 

interaction

hardware, 

software, env. 

interaction

hardware, 

software, 

env. /internal 

interaction

extensibility

formality

type

executability
aspect of 

DT/AS

notation

purpose

modeled 

subject
level of 

abstraction

domain

Legend

Figure 1: Models used in the DT and AS in the Fischertechnik case study.

The class diagram created during domain analysis is reused and evolves through different life cycle
phases of both the DT and the AS. During the creation of the MontiArc model, parts of the analysis class
diagram are reused as the data structure for the messages sent between the components of the system.
Thus, the model foci changes from descriptive to prescriptive. While the class diagram is descriptive of
the actual production line machines during the AS design, they can be reused in the DT design as the
schema for a digital shadow [42, 43], where they are now prescriptive of the digital representation of
the machine.

TheMontiArc model, created during AS design, describes how its function is decomposed, and as such,
it is a prescriptive model in this life cycle phase. The same model can be reused as a descriptive model
in the DT, by monitoring the messages passed between the component implementation and comparing
them to the specification. Operators are alerted of detected deviations to handle implementation or
operation errors.

4.2.2. Five-X

In the course of the Five-X’s life cycle, different models are used in different phases for either modeling
the functionality of the DT or the AS. For creating the DT, a GUI model describing the DT dashboard



Block diagram

discrete 

behavior

manufacturing

non 

extensible
graphical

descriptive

hardware

informal

simulation

PSM

interpreted

structure,

behavior

EIS

extensible textual

prescriptive

software

GUI-Model

defined syntax 

& semantics

user interface

PIM

transformed

operational 

data storage

PSM

hardware, 

software, 

interaction

AAS

non 

extensible

informal

data model

textual,

graphical

descriptive

manufacturing

interpreted

informal

OPC UA

non 

extensible

data model

communication

textual,

graphical

descriptive

interaction

manufacturing

PSM

interpreted

3D model/CAD

discrete 

behavior

manufacturing

non 

extensible
graphical

descriptive

hardware

informal

simulation

PSM

interpreted

Digital Shadow CD

data model

manufacturing

extensible textual

prescriptive

software

defined syntax 

& semantics

coupling, tools

PIM

transformed

extensibility

formality

type

executability
aspect of 

DT/AS

notation

purpose

modeled 

subject
level of 

abstraction

domain

Legend

Actual System

Figure 2: Models used in DT and AS in the Five-X case study.

structure and behavior is utilized, as well as a class diagram that describes the digital shadows that the
DT requires for working properly. In the creation of the AS, a virtual commissioning model consisting
of a 3D model and a block diagram is created. Based on this, the AS and its control are configured
and fine-tuned. Furthermore, an AAS stores design-time information, e.g., wiring plans and safety
constraints. When moving to the operation phase, the virtual commissioning models created during
the AS design phase become relevant for the DT. They can represent the current state of the AS in the
DT and the DT can compute analysis, e.g., a wear analysis of the connected drilling tool. For the AS
the AAS created in design also becomes relevant for its operation, storing information such as time
of operation and energy consumption. The OPC UA model of the Five-X is created at the operation
phase of the AS, where it acts as a communication interface between DT and AS. Hence, it must be
established before the operation of the DT.

5. Discussion

Insights from the case studies. When looking in depth into different foci of models, it became clear
that there is more potential in reusing models or at least model information that was created in the
design phase, also for other life cycle phases or for generating the DT. This results in a change of the
purpose of the model usage and its context. This would result in having to change the foci or having
different sets of facets and foci bound to a model at a certain point in time, related to the model usages.
More comprehensive analyses are needed to draw further conclusions, e.g., which types of models are
needed in which life cycle phase, which information in models overlaps, and what typical paths are in
which model types are evolving.

Application methods of the classification. Having this facetted classification, we see several
possible ways in which it can be usefully applied in practice:

1. This classification could be added to existing models as some sort of metadata describing them.
This makes it easier to find and reuse models, as their initial usage mode, the way of using them,
or their domain range is made explicit.

2. When creating amodel about a CPS that shall be used for digital twin engineering, the classification
could give an idea about which type of information might be missing in the models to cover
certain aspects in a digital twin.

3. The typical paths of foci additions and changes could give developers inspiration about how their
models might be used over time and what they could do with them within the digital twin’s



lifetime. This could help them to further consider what to model at the beginning as, e.g., the
purpose of a model might change over time and further information could be needed later on.

Limitations. We are not domain experts in mechanical engineering, so models from this particular
domain, e.g., for the engineering process of a production machine, must be classified by domain experts.
In our analysis, we may have missed an important classification. Thus, further evaluations such as
expert panels or interviews are needed, to get a more holistic picture of what model classifications are
relevant. Further aspects that could be worth discussing further with examples are:

• separating the model, its representation, and the usage of a model.

• defining relations between foci and facets to restrict combinations (similarly to restricting variants
in feature models) or mark mandatory combinations (i.e., simulation as a purpose might require
the models also to be executable). This could require using a representation as feature diagrams
with OCL for defining these relations or describing the classification as an ontology.

What is additionally missing is concrete guidance on how to implement this classification system in
practice using particular tooling. However, this can be suggested after further discussion with digital
twin engineers from different application domains.

Generalization to other application domains and classification extension. Even though we
have started to apply this facetted classification for models used in the manufacturing domain, we
envision an application also in other domains where digital twins are of interest. This might mean, that
additional facets and foci might have to be added to also consider concerns from these domains. We see
our classification, therefore as an initial discussion point for further research and as a point where the
different digital twin engineering communities can share and unify their perspectives [44].

Model classifications as a base for reuse. In addition, this work on classification can contribute
to the the National Research Data Infrastructure for and with Computer Science (NFDIxCS)2 project,
which works on FAIR Data Principles for sharing and reusing computer science research data and
software artifacts, i.e., models. Having such a classification within platforms managing research data
encapsulating models, together with relevant data, software and context in Research Data Manageement
Containers [45, 46] is one step further to foster the reuse of models. The foci in the classification
can make the search for particular model types and properties easier on such platforms. In addition,
in the context of digital twins, one can connect model types usable during DT runtime to particular
software components in this digital twin using these models, i.e., model managers for specific modeling
languages [47], simulators or analysis components. This connection would make reuse of models easier
as they come along with the software components to use them.

6. Conclusion

We have introduced an initial faceted classification for models used in and for digital twins in manu-
facturing. We have integrated different notions in literature and added missing concepts relevant for
digital twins. Our application of the classifications on two industially inspired cases demonstrates that
such model foci can change over the asset lifetime.

Moving on with this research requires further discussions within the community on additional case
studies to refine the classification, formalize constraints between facets, extend the coverage beyond
manufacturing, and provide tooling to support the classification process, but also querying of existing
models that can be reused within open or closed industrial settings.

2https://nfdixcs.org/

https://nfdixcs.org/


Acknowledgments

Partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2023 Internet of Production - 390621612. Website: https://www.
iop.rwth-aachen.de.
Partly funded by the DFG – Model-Based DevOps – 505496753. Website: https://mbdo.github.io.
Partly funded by the DFG under NFDI 52/1 – NFDIxCS – 501930651.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT, Gemini, and DeepL in order to:
Grammar and spelling check, Paraphrase and reword. After using these tools/services, the authors
reviewed and edited the content as needed and take full responsibility for the publication’s content.

References

[1] ISO/IEC, ISO/IEC 30173: Digital twin – Concepts and terminology, Technical Report, International
Standardization Organization (ISO), 2023.

[2] W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital twin in manufacturing: A categorical
literature review and classification, IFAC-PapersOnLine 51 (2018) 1016–1022. doi:https://doi.
org/10.1016/j.ifacol.2018.08.474, 16th IFAC Symposium on Information Control Problems
in Manufacturing INCOM 2018.

[3] J. Michael, L. Cleophas, S. Zschaler, T. Clark, B. Combemale, T. Godfrey, D. Khelladi, V. Kulka-
rni, D. Lehner, B. Rumpe, M. Wimmer, A. Wortmann, S. Ali, B. Barn, I. Barosan, N. Bencomo,
F. Bordeleau, G. Grossmann, G. Karsai, O. Kopp, B. Mitschang, P. Muñoz Ariza, A. Pierantonio,
F. Polack, M. Riebisch, H. Schlingloff, M. Stumptner, A. Vallecillo, M. van den Brand, H. Vangheluwe,
Model‐Driven Engineering for Digital Twins: Opportunities and Challenges, INCOSE Systems
Engineering (2025). URL: https://doi.org/10.1002/sys.21815. doi:10.1002/sys.21815.

[4] H. Stachowiak, Allgemeine Modelltheorie, Springer Verlag, Wien New York, 1973.
[5] X. Hu, R. H. Assaad, A bim-enabled digital twin framework for real-time indoor environment

monitoring and visualization by integrating autonomous robotics, lidar-based 3d mobile mapping,
iot sensing, and indoor positioning technologies, Journal of Building Engineering 86 (2024) 108901.
doi:10.1016/j.jobe.2024.108901.

[6] E. Ferko, L. Berardinelli, A. Bucaioni, M. Behnam, M. Wimmer, Towards interoperable digital twins:
Integrating sysml into aas with higher-order transformations, in: 2024 IEEE 21st International
Conference on Software Architecture Companion (ICSA-C), 2024, pp. 342–349. doi:10.1109/
ICSA-C63560.2024.00063.

[7] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe, M. S. Uysal, W. M. P. van
der Aalst, A. Wortmann, Process Prediction with Digital Twins, in: Int. Conf. on Model Driven
Engineering Languages and Systems Companion (MODELS-C), ACM/IEEE, 2021, pp. 182–187.

[8] D. Bano, J. Michael, B. Rumpe, S. Varga, M. Weske, Process-Aware Digital Twin Cockpit Synthesis
from Event Logs, Journal of Computer Languages (COLA) 70 (2022). doi:10.1016/j.cola.2022.
101121.

[9] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, A. Wortmann, Multi-paradigm
modelling for cyber–physical systems: a descriptive framework, Software and Systems Modeling
20 (2021) 611–639.

[10] A. Bucchiarone, B. Combemale, A. Pierantonio, N. Bencomo, M. van den Brand, J.-M. Bruel,
A. Cicchetti, J. Di Rocco, L. Lambers, J. Michael, B. Rumpe, M. Sjödin, G. Taentzer, M. Tichy,
H. Vangheluwe, M. Wimmer, S. Zschaler, Modeling: The Heart and Soul of Engineering Smart
Ecosystems, in: Int. Conf. on Model Driven Engineering Languages and Systems Companion
(MODELS-C): SAM Conference, ACM/IEEE, 2025.

https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://mbdo.github.io
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1002/sys.21815
http://dx.doi.org/10.1002/sys.21815
http://dx.doi.org/10.1016/j.jobe.2024.108901
http://dx.doi.org/10.1109/ICSA-C63560.2024.00063
http://dx.doi.org/10.1109/ICSA-C63560.2024.00063
http://dx.doi.org/10.1016/j.cola.2022.101121
http://dx.doi.org/10.1016/j.cola.2022.101121


[11] H. Boyes, T. Watson, Digital twins: An analysis framework and open issues, Computers in
Industry 143 (2022) 103763. doi:https://doi.org/10.1016/j.compind.2022.103763.

[12] R. Eramo, F. Bordeleau, B. Combemale, M. van Den Brand, M. Wimmer, A. Wortmann, Conceptu-
alizing digital twins, IEEE Software (2021).

[13] H. Washizaki, Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), IEEE
Computer Society, 2024. URL: www.swebok.org, version 4.0.

[14] Y. Kang, H. Yan, F. Ju, Performance evaluation of production systems using real-time machine
degradation signals, IEEE Transactions on Automation Science and Engineering 17 (2020) 273–283.
doi:10.1109/TASE.2019.2920874.

[15] K. La Barre, Facet analysis, Annual Review of Information Science and Technology 44 (2010)
243–284. doi:10.1002/aris.2010.1440440113.

[16] K. Crowston, B. Kwasnik, A framework for creating a facetted classification for genres: addressing
issues of multidimensionality, in: 37th Annual Hawaii Int. Conf. on System Sciences, 2004, pp. 9
pp.–. doi:10.1109/HICSS.2004.1265268.

[17] J. Seabra, L. Fernandes da Silva, Classifying software modeling languages: The clupir model
approach, IEEE Access 13 (2025) 80759–80774. doi:10.1109/ACCESS.2025.3567005.

[18] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C. Cheng, P. Collet, B. Combemale, R. B. France,
R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D. Stikkolorum, J. Whittle, The relevance of
model-driven engineering thirty years from now, in: J. Dingel, W. Schulte, I. Ramos, S. Abrahão,
E. Insfran (Eds.), Model-Driven Engineering Languages and Systems, Springer International
Publishing, Cham, 2014, pp. 183–200.

[19] J. Pfeiffer, B. Rumpe, D. Schmalzing, A. Wortmann, Composition operators for modeling languages:
A literature review, Journal of Computer Languages 76 (2023) 101226.

[20] A. W. Brown, Model driven architecture: Principles and practice, Software Systems Modeling 3
(2004) 314–327.

[21] B. Rumpe, Modeling with UML: Language, Concepts, Methods, Springer International, 2016. URL:
https://mbse.se-rwth.de/.

[22] D. Lehner, J. Zhang, J. Pfeiffer, S. Sint, A.-K. Splettstößer, M. Wimmer, A. Wortmann, Model-driven
engineering for digital twins: a systematic mapping study, Software and Systems Modeling (2025).

[23] F. Tao, B. Xiao, Q. Qi, J. Cheng, P. Ji, Digital twin modeling, Journal of Manufacturing Systems 64
(2022) 372–389. doi:https://doi.org/10.1016/j.jmsy.2022.06.015.

[24] M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmeister, M. Wimmer, A. Wortmann, A
cross-domain systematic mapping study on software engineering for Digital Twins, Journal of
Systems and Software (JSS) 193 (2022).

[25] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel, D. Vojtisek, Engineering Modeling
Languages: Turning Domain Knowledge into Tools, Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series, 2016.

[26] S. Friedenthal, Systems Engineering Body of Knowledge (SEBoK): Types of Models, 2025. https:
//sebokwiki.org/wiki/Types_of_Models.

[27] M. Voelter, J. Siegmund, T. Berger, B. Kolb, Towards user-friendly projectional editors, in: Int.
Conf. on Software Language Engineering, Springer, 2014, pp. 41–61.

[28] R. Paredis, H. Vangheluwe, Modelling and simulation-based evaluation of twinning architectures
and their deployment, in: 14th Int. Conf. on Simulation andModeling Methodologies, Technologies
and Applications SIMULTECH-Volume 1, 2024, pp. 170–182.

[29] Companionwebsite, https://github.com/iswunistuttgart/edtconf-dts-and-the-use-of-models/, 2025.
Accessed: 2025-07-09.

[30] F. Tao, M. Zhang, Digital twin shop-floor: A new shop-floor paradigm towards smart manufactur-
ing, IEEE Access 5 (2017) 20418–20427. doi:10.1109/access.2017.2756069.

[31] S. Boschert, R. Rosen, Digital Twin—The Simulation Aspect, Springer International Publishing,
Cham, 2016, pp. 59–74. doi:10.1007/978-3-319-32156-1_5.

[32] A. Fuller, Z. Fan, C. Day, C. Barlow, Digital twin: Enabling technologies, challenges and open
research, IEEE Access 8 (2020) 108952–108971. doi:10.1109/ACCESS.2020.2998358.

http://dx.doi.org/https://doi.org/10.1016/j.compind.2022.103763
www.swebok.org
http://dx.doi.org/10.1109/TASE.2019.2920874
http://dx.doi.org/10.1002/aris.2010.1440440113
http://dx.doi.org/10.1109/HICSS.2004.1265268
http://dx.doi.org/10.1109/ACCESS.2025.3567005
https://mbse.se-rwth.de/
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2022.06.015
https://sebokwiki.org/wiki/Types_of_Models
https://sebokwiki.org/wiki/Types_of_Models
https://github.com/iswunistuttgart/edtconf-dts-and-the-use-of-models/
http://dx.doi.org/10.1109/access.2017.2756069
http://dx.doi.org/10.1007/978-3-319-32156-1_5
http://dx.doi.org/10.1109/ACCESS.2020.2998358


[33] European Parliament, Regulation (EC) No 1893/2006 of the European Parliament and of the Council
of 20 December 2006 establishing the statistical classification of economic activities NACE Revision
2 and amending Council Regulation (EEC) No 3037/90 as well as certain EC Regulations on specific
statistical domains, 2006. URL: https://eur-lex.europa.eu/eli/reg/2006/1893/2019-07-26.

[34] M. Heithoff, N. Jansen, J. Michael, F. Rademacher, B. Rumpe, Model-Based Engineering of Multi-
Purpose Digital Twins in Manufacturing, Springer Nature Switzerland, 2024, pp. 89–126. doi:10.
1007/978-3-031-67778-6_5.

[35] J. Michael, L. Cleophas, S. Zschaler, T. Clark, B. Combemale, T. Godfrey, D. E. Khelladi, V. Kulkarni,
D. Lehner, B. Rumpe, et al., Model-driven engineering for digital twins: Opportunities and
challenges, Systems Engineering (2025).

[36] S. Leitner, W. Mahnke, OPC UA - service-oriented architecture for industrial applications,
Softwaretechnik-Trends 26 (2006).

[37] D. Harel, B. Rumpe, Meaningful Modeling: What’s the Semantics of ”Semantics”?, IEEE Computer
Journal 37 (2004) 64–72.

[38] B. Combemale, N. Jansen, J.-M. Jézéquel, J. Michael, Q. Perez, F. Rademacher, B. Rumpe, D. Vojtisek,
A. Wortmann, J. Zhang, Model-Based DevOps: Foundations and Challenges, in: Model-Driven
Engineering for Digital Twins (MoDDiT) WS at ACM/IEEE Int. Conf. on Model Driven Engineering
Languages and Systems Companion, IEEE, 2023. doi:10.1109/MODELS-C59198.2023.00076.

[39] H. Kausch, M. Pfeiffer, D. Raco, A. Rath, B. Rumpe, A. Schweiger, A Theory for Event-Driven
Specifications Using Focus and MontiArc on the Example of a Data Link Uplink Feed System, in:
I. Groher, T. Vogel (Eds.), Software Engineering 2023 Workshops, Gesellschaft für Informatik e.V.,
2023, pp. 169–188.

[40] Stuttgarter Maschinenfabrik, https://www.isw.uni-stuttgart.de/forschung/projekte/
Stuttgarter-Maschinenfabrik/, 2025. Accessed: 2025-07-09.

[41] S. Kannoth, J. Hermann, M. Damm, P. Rübel, D. Rusin, M. Jacobi, B. Mittelsdorf, T. Kuhn, P. O.
Antonino, Enabling smes to industry 4.0 using the basyx middleware: A case study, in: 15th
Europ. Conf. on Software Architecture (ECSA’21), Springer, 2021, pp. 277–294.

[42] J. Michael, I. Koren, I. Dimitriadis, J. Fulterer, A. Gannouni, M. Heithoff, A. Hermann, K. Hornberg,
M. Kröger, P. Sapel, N. Schäfer, J. Theissen-Lipp, S. Decker, C. Hopmann, M. Jarke, B. Rumpe,
R. H. Schmitt, G. Schuh, A Digital Shadow Reference Model for Worldwide Production Labs,
in: C. Brecher, G. Schuh, W. van der Aalst, M. Jarke, F. Piller, M. Padberg (Eds.), Internet of
Production: Fundamentals, Applications and Proceedings, Springer, 2023, pp. 1–28. doi:10.1007/
978-3-030-98062-7_3-2.

[43] M. Heithoff, C. Hopmann, T. Köbel, J. Michael, B. Rumpe, P. Sapel, Application of Digital Shadows
on Different Levels in the Automation Pyramid, Data and Knowledge Engineering (DKE) 158 (2025)
102442. URL: https://doi.org/10.1016/j.datak.2025.102442. doi:10.1016/j.datak.2025.102442.

[44] J. Michael, D. Bork, M. Wimmer, H. C. Mayr, Quo Vadis Modeling? Findings of a Com-
munity Survey, an Ad-hoc Bibliometric Analysis, and Expert Interviews on Data, Process,
and Software Modeling, Journal Software and Systems Modeling (SoSyM) 23 (2024) 7–28.
doi:10.1007/s10270-023-01128-y.

[45] F. Al Laban, J. Bernoth, M. Goedicke, U. Lucke, M. Striewe, P. Wieder, R. Yahyapour, Establishing
the research data management container in nfdixcs, in: Proceedings of the Conference on Research
Data Infrastructure, volume 1, 2023. doi:10.52825/cordi.v1i.395.

[46] J. Bernoth, S. I. Ayon, F. A. Laban, S. Bavendiek, H. Federrath, M. Striewe, M. Goedicke, Workflow for
creating and sealing a research data management container (rdmc), in: Software Engineering 2025
– Companion Proceedings, Gesellschaft für Informatik, Bonn, 2025. doi:10.18420/se2025-ws-26.

[47] J. Pfeiffer, J. Zhang, B. Combemale, J. Michael, B. Rumpe, M. Wimmer, A. Wortmann, Towards a
Unifying Reference Model for Digital Twins of Cyber-Physical Systems, in: Int. Conf. on Emerging
Technologies and Factory Automation (ETFA’25), IEEE, 2025.

https://eur-lex.europa.eu/eli/reg/2006/1893/2019-07-26
http://dx.doi.org/10.1007/978-3-031-67778-6_5
http://dx.doi.org/10.1007/978-3-031-67778-6_5
http://dx.doi.org/10.1109/MODELS-C59198.2023.00076
https://www.isw.uni-stuttgart.de/forschung/projekte/Stuttgarter-Maschinenfabrik/
https://www.isw.uni-stuttgart.de/forschung/projekte/Stuttgarter-Maschinenfabrik/
http://dx.doi.org/10.1007/978-3-030-98062-7_3-2
http://dx.doi.org/10.1007/978-3-030-98062-7_3-2
https://doi.org/10.1016/j.datak.2025.102442
http://dx.doi.org/10.1016/j.datak.2025.102442
http://dx.doi.org/10.1007/s10270-023-01128-y
http://dx.doi.org/10.52825/cordi.v1i.395
http://dx.doi.org/10.18420/se2025-ws-26

	1 Introduction
	2 Related Work on Model Classifications
	3 A Faceted Classification for Digital Twin Models
	4 Case studies
	4.1 Application of the classification
	4.1.1 Fischertechnik
	4.1.2 Five-X

	4.2 Changing foci in the system life cycle
	4.2.1 Fischertechnik
	4.2.2 Five-X


	5 Discussion
	6 Conclusion

