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Abstract—The integration of independently developed digital
twins for automotive diagnosis in a service-oriented vehicle
architecture into a complex systems-of-systems rises various
challenges to be handled. These challenges have to be tackled
in detail for each particular domain and technical system
architecture. Current research lacks to discuss them for service-
oriented vehicle architectures. Within the project AUTOtech.agil,
we are developing a digital twin for automotive diagnosis. This
paper describes the application scenario, discusses integration
challenges in detail and identifies possible mitigation strategies
for the challenges. This discussion allows us to identify areas
where general mitigation techniques have yet to be found and to
extract a concrete roadmap for the automotive diagnosis digital
twins.

Index Terms—Digital Twin, Model-Driven Engineering, Soft-
ware Architecture, Automotive, Vehicle Diagnosis, Integration

I. INTRODUCTION

The term software-defined vehicle (SDV) [1] describes
the vision of software-driven automotive development, where
functions are primarily defined by software. The research
project AUTOtech.agil develops a service-oriented architec-
ture for SDV to enable easy updateability and upgradability
[2]. We efficiently develop digital twins (DTs) for vehicle
diagnostics utilizing model-driven engineering (MDE). Model-
driven digital twin engineering approaches [3] are applied for
creating digital twins of cyber-physical systems [4], e.g., in
production [5]–[9], for hospital transportation systems [10],
wind turbines [11], robotic arms [12], spacecrafts [13], soccer
robots [14] or indoor air quality management systems [15].
MDE approaches are also applied for DTs of software sys-
tems [16], cyber-bionical systems [17], or smart cities [18].
Within the automotive domain, up to now, digital twins for,
e.g., for safely connected cars [19], vehicle system dynam-
ics [20], smart electric vehicles [21], or electric vehicle battery
systems [22], have been developed, however, MDE is rarely
used for their development.

As the understanding of DTs often differs from domain to
domain, prior to presenting our approach and the resulting
challenges, a clarification of our understanding of DTs and
digital shadows is required. The following definition is based
on [5], [10], [23], [24], and was first published in [25]. It
aims to provide a general definition for DTs applicable to
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various purposes. In our understanding, “a digital twin of a
system consists of a set of models of the system and a set
of digital shadows, both of which are purposefully updated
on a regular basis, and provides a set of services to use
both purposefully with respect to the original system. The
digital twin interacts with the original system by providing
useful information about the system’s context and sending it
control commands.” [25] A digital shadow includes “a set of
contextual data traces and/or their aggregation and abstraction
collected concerning a system for a specific purpose with
respect to the original system.” [24] Thus, a DT might include
several digital shadows for different purposes encapsulating
the relevant data and relationships to relevant models. Clearly,
these digital shadows as well as the digital twin itself are
subject to change over time, as the related cyber-physical
system can be updated and upgraded.

The requirement for easy updateability and upgradability in
SDV requires the constant evolution of our DT. Thus, instead
of developing and updating one highly complex DT each time,
we develop compositional DTs, such that only the DTs of
updated services need modifications. During DT engineering,
we use architecture models in an iterative MDE approach [26]
to refine the DT. The evolution of DTs is still a challenging
research area [27]. While our compositional DT approach
focuses on easing the DT engineering and evolution, it requires
integrating small DTs. The integration of these model-based
DTs in itself comes with many different challenges.

In [28], we identified and described 15 challenges for
integrating DTs. In this paper, we discuss how these challenges
apply to the application scenario of SDV in AUTOtech.agil
and how we intend to handle the challenges. This paper’s
contributions are:

(a) A description of the application scenario of digital twins
for automotive diagnosis in AUTOtech.agil.

(b) The discussion of the challenges for DT integration as
stated in [28] in the context of the application scenario.

(c) A discussion of mitigations for these challenges in the
given application scenario.

For this specific use case, we have identified 8 of the chal-
lenges as not relevant, 5 as relevant, and 2 as very relevant. The
remainder of this paper is structured as follows: We present the
application scenario and the technical concept of how we build
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DTs for diagnosis in Sec. II. Sec. III discusses the challenges
for DT integration in the context of the application use case,
and how we intend to handle the challenges. In Sec. IV we
show a research roadmap that emerges from the discussion
before we conclude.

II. APPLICATION SCENARIO

The vision of software-defined vehicles (SDV) is that the
functions of vehicles are enabled through software. A key role
in this vision is the use of a few strong computing resources
that orchestrate services in the vehicle. Traditional vehicle
manufacturing statically integrates software components to
software architecture at design time. SDV instead envisions
an easy updateability and upgradability of the software via
dynamic architectures.

Fig. 1. Application scenario in the project AUTOtech.agil; Self-driving
vehicles of different types (shuttles, transporters, taxis, and personal vehicles)
provide mobility services. Multiple vehicles are managed by fleet managers.

A. Digital Twin Hierarchy

In the research project AUTOtech.agil, we develop digital
twins (DT) for SDV for diagnosing issues within vehicles [29].
Fig. 1 sketches the project’s vision of different types of self-
driving vehicles: shuttles, transporters, taxis, and personal ve-
hicles. Multiple vehicles are managed by fleet managers, e.g.,
for a transportation company or a shuttle service company. The
project employs the automotive service-oriented architecture
(ASOA) [2] for vehicles’ software components. The ASOA
defines multiple layers for service components, as shown in
Fig. 2 (bottom to top):

• The physical layer shows the single electronic control
units (ECU), which are interconnected via Ethernet.

• The service layer describes vehicle services, which pro-
vide and require interfaces, compute functions, and con-
trol the hardware, e.g., window motors, window control
buttons, or the trajectory motor.

• The function layer describes the vehicle functions that
emerge from the interplay of services.

• The driving mode layer describes different modes of
the vehicle. The car may be in the automated driving
mode. The tele-operation mode means that the vehicle is
remotely controlled by a human operator in situations that
the automated driving mode cannot handle. The secure

stop mode means that the car securely comes to a stop
in the case of irresolvable incidents.

The ASOA orchestrator controls how the vehicle services
are interconnected via a mode automaton. The automaton
switches between service interconnection modes based on
triggers from the service meta data. E.g., when a laser scanner
service for environment detection becomes unavailable, it can
switch to a camera-based detection for safely stopping the
car for maintenance. Fig. 2 shows active modes, functions,
services, and ECUs as configured by the orchestrator at a given
time as an example (blue background).

Fig. 2. Layered Architecture of the ASOA (adapted from [2])

The application scenario uses DTs on two levels for diag-
nosing issues in the vehicle: (1) vehicle services of the ASOA
and (2) the vehicle level.

First, for each vehicle service we develop a DT for single
vehicle service diagnosis (vehicle service DT). An example is
a diagnosis DT for the front left wheel (and one each for the
other three wheels).

As part of this vehicle service DT, digital shadows store
time-related data about the wheel’s runtime properties, in-
cluding the pressure and the rotational speed, alongside meta
data, including the service availability status, and quality
data that describes the quality of the data provision. The
latter can decrease over time, e.g., when the pressure sen-
sor’s precision decreases over time. A diagnosis DT service
provides operations for diagnosing the data and meta data.
Using an architecture modeling language, we model vehicle
services and their behavior according to their specification
and generate the respective vehicle service DT, which in-
cludes a simulator DT service. Thus, we can check whether
the observed behavior of an ASOA service conforms to its
specification. In the ASOA architecture, both hardware and
software components are handled as services, and detectable
errors on both hardware- and software side throw error codes.
These error codes are explicitly handled by our DTs, which
offer predefined diagnosis operations for each error code. As



Fig. 3. ASOA ervices involved in planning automated driving and safe halting
(adapted from [29]).

both hardware and software components are services, we do
not explicitly differentiate between software-induced errors,
e.g., receiving an implausible message value, and hardware-
induced errors, e.g., faulty memory causing the termination of
a service. Instead, each kind of error has its own error code.

Diagnosis does not only operate on single-vehicle services.
Multiple vehicle services may contribute to a diagnosis. There-
fore, secondly, we develop a vehicle DT by integrating the DTs
of the vehicle services. This vehicle DT also implements the
orchestrator as a DT service that tracks vehicle service inter-
connections. A subset of the orchestrator automaton represents
a single vehicle function, from which we can derive a DT ser-
vice for function diagnosis. Fig. 3 gives an example of services
in the ASOA for automated driving. A vehicle function in
this context is given by the driving dynamics function, which
controls the steering and the speed of the vehicle according to
the trajectories calculated from the automated driving and safe
halting planners. These trajectories then consider additional
information from the environment monitoring service, before
being sent to the vehicle dynamics control service. This service
then executes the resulting trajectories by sending control
commands to the wheel hubs. As each wheel hub in the
AUTOtech.agil vehicles is steered and powered individually
[30], the driving dynamics function coordinates the maneu-
vers by sending steering and motor signals from the vehicle
dynamics control to each individual wheel hub, which in return

Fig. 4. The hierarchical control flow of the vehicle DT; it can combine the
diagnosis operations of the vehicle service DTs to enable effect chain analysis.

sends status data back to the vehicle dynamics control. Thus,
we introduce a diagnosis DT service for the driving dynamics
function and compose it with the DTs of all-wheel hub
services. The diagnosis service for the function in the vehicle
DT therefore provides read/write access to the data and meta
data required for the driving dynamics function and all wheel
hub sensors. This approach creates a hierarchical composition
of DTs for diagnosis with a vehicle DT integrating all vehicle
service DTs. This hierarchical integration can be seen in Fig. 4.

A DT operator can run diagnostic operations using a diag-
nostic device. This device is able to connect to the vehicle DT
and single vehicle service DTs and send diagnosis requests
to both. The diagnostic device can also utilize the DTs to
send control commands to the vehicle and its services via the
service-oriented vehicle diagnostics (SOVD) [31] compliant
interface. As an example, when diagnosing a defect driver
window, we first check whether using the window lifter switch
leads to respective data in the DT of the switch service.
Second, we check whether sending a control command to
the window lifter motor DT triggers the motor of the original
system. Third, we check via the data in the DTs whether using
the switch triggers a command from the switch ASOA service
to the motor ASOA service. In case of any failures, we can
diagnose the respective parts as defective.

The vehicle DT contains a DT service for the orchestration
of the different vehicle services and their functions, which re-
flects the orchestrator in the ASOA, to diagnose the state of the
orchestrator. It includes a database collecting the orchestration-
relevant signals as well as the state of the orchestrator. On
changes in the ASOA by the orchestrator, the orchestrator
DT service in the vehicle DT updates the integration of
the underlying DTs on the service and function layer. Thus,
diagnostic operations on the vehicle DT can be relayed to the
correct vehicle service DTs.



Fig. 5. The DT of a single vehicle service; model-driven engineering
is utilized to generate digital twin parts from architecture diagrams, class
diagrams, and OCL.

B. Digital Twin Engineering

The structure of our DT for a single vehicle service is shown
in Fig. 5. Utilizing model-driven engineering, we generate
parts of our DTs from models in the architecture modeling
language MontiArc [32], [33], UML class diagrams, and OCL.
Architecture models are used to describe service interfaces
and the orchestrator. Additionally, the architecture models
utilize automata to model the service behavior according to
the ASOA service specification to detect service behavior that
does not comply with the specification. Hereby, the degree of
behavior modeling varies from service to service and can be
underspecified or iteratively refined.

Additional service-specific operations can be generated by
utilizing class diagrams and OCL to model classes for software
errors of services. In the case of diagnosing the behavior of a
single-vehicle service, these operations can be utilized directly
by the diagnostic device. They contain suitable diagnosis
queries for error analysis. Additionally, a diagnostic device
can connect to the DTs by utilizing the diagnosis interface.

DT operations for diagnosis can be accessed from the
diagnosis interface via SOVD. SOVD is a standard developed
by ASAM e.V. It defines a tree structure for retrieving data
and allows the execution of queries on the data. It is the basis
of communication for our DTs with the diagnostic device as
well as with the original vehicle and its services.

The transfer of time-related data from the vehicle to the DT
is performed by a server that provides a SOVD interface inside
the vehicle. This server pre-processes the data before sending
it to the DT to reduce the amount of data while ensuring
high quality. Therefore, data points of services that do not
contain changing data get approximated while changing data
gets recorded with a higher level of precision. For service data
that influences other services as part of an effect chain, such
a change in data requires more precise data of all affected
services during the time frame of interest.

For basic diagnosis of services, identifiers and measured
values can be read and control commands can be sent to
vehicle service DTs via the SOVD interface. SOVD also
provides suitable functions for the analysis of log files. Thus,
the concept of errors can be mapped directly to SOVD by
filtering the log files for error codes and calling the appropriate
generated diagnosis operations of the DT according to the
error code. These suitable diagnosis operations are modeled in
our DT per error kind as a UML class. Thus, the error code
itself does not require to contain additional diagnosis-relevant
information, as the means to extract this information from the
log files is either fully modeled in the respective software error
class itself or can be extracted from our orchestrator log data
in case of involvement of multiple services. This ensures a
fixed size of the error code, which is important to satisfy time
constraints regarding in-vehicle communication.

The general structure of our composite vehicle DT is the
same as for the single service DTs. The difference is that
architecture diagrams for the vehicle DT model the orches-
tration of the composed DTs and vehicle functions. Herein,
the term vehicle function describes a vehicle functionality
that can involve multiple vehicle services. Furthermore, class
diagrams and OCL in our composite DT model errors on the
vehicle or vehicle function level, meaning errors that involve
multiple vehicle services for diagnosis, which therefore require
access to multiple vehicle service DTs. An example of such
an error would be a timeout of an expected input. As the
vehicle services themselves do not have information about
their interconnection, the vehicle is required to provide in-
formation on which service should have delivered said input.
The interconnection of these vehicle services at the point in
time that is observed by the diagnosis, can be derived from
the orchestrator DT service. Thus, our composite DT controls
the data flow between our single-service DTs and provides
diagnostic operations dependent on information from multiple
vehicle service diagnoses.

The orchestrator DT service allows to query (over time) and
control the vehicle service composition. Hence, the vehicle
DT can also analyze the behavior of the ASOA orchestrator.
This is relevant, as the ASOA orchestrator does not only
control service interconnection but also functionality that is
dependent on multiple services. An example of such a vehicle
function is given by the permission to open the door of a
shuttle vehicle from the outside [2]. Three services contribute
to the permission to open the door via four different rules:

1. The vehicle is stationary.



2. The vehicle is in one of the defined areas for boarding.
3. A passenger is within two meters of the door with his

or her registered transceiver (e.g., a smartphone with an
app).

4. Technical staff requests the opening.
The door may be opened from the outside if either rules 1,
2 and 3 are satisfied, or if rules 1 and 4 are satisfied. The
vehicle’s movement status is detected by the service for the
traction motors. Whether the vehicle is in a specified area
for boarding and disembarking is detected by a service that
compares the position signal with regularly updated maps. The
presence of an approaching passenger is detected by a service
with a radio transceiver. The opening request of technical
personnel is detected by a service that uses the same radio
transceiver.

The part of the orchestrator that controls a vehicle function
is modeled as its own automaton from which a function diag-
nosis service is generated. Thus, when diagnosing a specific
function, the function diagnosis service with the respective
sub-automaton that handles the function orchestration is used
to access the relevant vehicle service DTs. The main advantage
of splitting vehicle function diagnosis from vehicle diagnosis
via an orchestrator subautomaton lies in the possibility to
model additional function-specific diagnostic operations.

In the remainder of this paper, we will use similar terms
associated with the word “service” or “DT” with very different
meanings. To avoid confusion, we briefly describe these terms:

• Vehicle Service: A concept of the service-oriented ve-
hicle architecture. Vehicle services are responsible for
a specific task in the context of the use case, such as
controlling the window motors.

• ASOA Service: A service in the ASOA architecture
implements a vehicle service. Not every vehicle service
must have an ASOA implementation, e.g., some vehicle
services have a ROS implementation and an ASOA
wrapper. For reference see Fig. 2.

• Vehicle Service DT: A digital twin of one vehicle
service. It has a connection to the corresponding ASOA
service or ASOA wrapper. For reference see Fig. 5.

• Vehicle DT: The digital twin of the entire vehicle. For
reference see Fig. 4.

• DT Service: An active software component within a
vehicle service DT or a vehicle DT, consisting of a state,
functionality algorithms, and optionally also visualiza-
tions in a graphical user interface for human operators.
Thus, other digital systems or humans may be users of
DT services. For reference see Fig. 5.

III. CHALLENGES

In this section, we discuss how the challenges mentioned
in [28] apply to the application scenario above, and how we
intend to mitigate them.

1. Horizontal integration of digital twin parts: Multi-
ple views of the original systems, such as the driver’s, the
maintainer’s, or the insurance’s view upon an original system
may lead to the necessity to integrate multiple DTs into one.

In our application scenario, diagnosis is considered one of
these views. Therefore horizontal integration on this level is
not necessary.

We do, however, integrate multiple DTs for the diagnosis
of multiple different original systems – the vehicle services
– to build the vehicle DT. The service DTs can be used
for isolated diagnostics of single services. These atomic parts
are integrated horizontally to enable effect chain analysis for
analyzing more complex diagnostic use cases. Additionally,
we need to provide multiple visualizations and DT cockpits
for the different DT parts.

This is a special case of horizontal integration because
we can use the same modeling language for the DT mod-
els, which utilize composable languages, i.e., MontiArc [33]
for composable architecture models, class diagrams for data
structures, and OCL for data constraints. Therefore, on the
modeling level, the integration uses well-understood composi-
tion mechanisms. On the architectural level, we use SOVD as
a unified interface technology to technically integrate the DTs.
We automatically generate code for these interfaces from the
models.

Still, our DTs are provided with a single perspective: the
vehicle diagnosis. Other perspectives on the vehicle or its
services might be subject to DTs later on. This showcases
the mentioned challenge: a DT, that is produced for one
specific purpose, must consider its future integration into
other contexts. From software engineering, we have successful
methods to handle this: Modularization with clearly defined
interfaces in standardized formats.

Main Finding: Horizontal integration is very relevant as we
need to combine multiple DTs (for vehicle services) to build
the vehicle DT.

2. Vertical composition of digital twins: The challenge
of vertical composition means that the i) data, ii) service,
and iii) models of a DT need to be composed when their
respective DTs are composed. The challenges here include
the different data frequencies, service operations required, or
model granularity.

ASOA architecture specifications are not hierarchical, but all
services are defined on the same layer. However, the vertical
composition of DTs is still present in the form of vehicle
DTs. Diagnostics of vehicles and their functions include
the diagnosis of the composed services. An example is the
function of automated door controls: allowing the doors to be
opened from outside (a vehicle function) depends on multiple
services. The speed of the vehicle has to be 0 and the current
autonomous driving mission has to be completed [2]. For the
purpose of diagnosis, we introduce a hierarchy of the vehicle
and its service orchestration.

Composing the data of the vehicle (i) service DTs and the
vehicle DT is simple due to the purpose of the DT and the
composed nature of the vehicle functions and vehicle services.
All data required for the functions require a respective defi-
nition in a DT service of the vehicle DT. Therefore the data
is available in the required format and granularity. All vehicle
service DTs provide uniform DT services (ii) for the purpose



of diagnostics. The SOVD standard describes composable
interfaces via a tree structure, which propagates to the DT
services and their queries and control commands. For the
composition of models (iii), concepts and tools already exist
(see challenge 1).

Main Finding: Vertical composition is very relevant as
we need to compose different vehicle service DTs to enable
vehicle function diagnosis.

3. Composition of DTs for different perspectives: This
challenge tackles different perspectives upon an original sys-
tem, e.g., DTs of the machines and of the employees on
the shop floor of a factory. Vehicle diagnostics is the only
purpose for the DT at hand, and the application scenario
only provides this one, technical perspective on the issue.
Thus, multiple perspectives are not relevant. One could argue
that the distinction between software-induced and hardware-
induced errors in the architecture can be handled from different
perspectives. However, hard- and software components are
considered services in the context of ASOA, with error types
only distinguished by the respective error codes.

Main Finding: Composition of DTs for different perspec-
tives onto the vehicle is not relevant to our scenario, as we
just have the diagnosis as a singular perspective.

4. Connection of independently developed systems to a
system-of-system: The services that the DTs are based on
are developed independently with different technologies by
different developers. E.g., services such as the automated driv-
ing component are implemented in Robot Operating System
(ROS) instead of ASOA services. Therefore the connection of
independently developed systems to a system-of-system comes
as a challenge in this scenario. To mitigate this challenge,
communication interfaces with the DTs are unified via the
SOVD standard. We, thus, implement diagnosis interfaces
for the DTs with SOVD to ensure a unified communication,
independent of the vehicle service implementation. This also
affects the virtualization, as the SOVD standard provides API
composition (see challenge 2).

Main Finding: The connection of independently developed
systems to a system-of-system is relevant in the context of
vehicle services with different technology stacks.

5. Different lifecycle representations of the original sys-
tem: Different lifecycle representations of an original system,
such as in-manufacturing and in-operation are not the focus of
our project. Therefore this challenge does not apply. However,
diagnostic data could be used in the context of different
lifecycle representations. One example of this would be a
quality assurance twin for car producers, as one DT per vehicle
or as one DT for all vehicles (or a respective DT composition).
During manufacturing, diagnosis has another role than after
production. Diagnosis information during the manufacturing
phase can increase the effectiveness and efficiency of issue
handling on single cars. A DT of all cars in manufacturing
can help identify common hardware issues such as degrading
sensor quality and fixing it in the production process for future
cars, while identified software issues can be patched.

Main Finding: This challenge is not relevant for us, as

different lifecycle representations of an original system are
not the focus of our application scenario.

6. Protection of intellectual property: The DT for diagno-
sis collects data about the input, state, and output of services
in the car and the orchestrator state. Assuming that multiple
companies are involved in producing parts of these cars, the
data can provide insights into the intellectual property of these
companies. Hence it has to be considered who can access
the data and execute a diagnosis based on the data. In the
course of the project, we assume that the services of each
part provide only the diagnosis information that the respective
companies are willing (or obliged) to share with their partners
and potentially the customer.

Main Finding: Protection of intellectual property is not a
challenge in our scenario as we assume that the diagnosis
information shared by the vehicle consists only of information
the respective companies are willing to share. However, this
might become a relevant topic in the future.

7. Privacy aspects of data and 8. Rights and roles in
the integrated DT: A DT for vehicle diagnostics can define
certain rights and roles for different diagnostic use cases. For a
private vehicle owner, a role with access to a subset of simpli-
fied diagnostic information might be of interest, while the car
repair shop needs access to the complete diagnostic interface.
As already mentioned, in terms of lifecycle representation,
whole product lines might be of interest to the car manufac-
turer. To address privacy concerns such as those arising from
the EU’s general data protection regulation (GDPR), any DT
for a vehicle must respect the respective regulations. Privacy
and security aspects with associated rights and roles need to
be integrated. The SOVD standard specifies an authentication
concept, that can be used to limit access to SOVD data, but
no implementation technology or composition mechanism is
defined. As the implementation is in our control, we can use
technology with a common configuration of rights and roles.
When the development of vehicle services is distributed over
multiple stakeholders, standardization of this technology stack
and configuration must be enforced.

Main Finding: Data privacy and rights and roles in the
integrated DT are both relevant to our application scenario, as
the result has to comply with data protection regulations. Thus,
certain roles such as car manufacturers require disidentification
of vehicle diagnosis data.

9. Composition of heterogeneous twin implementations:
Within the presented application scenario the DT for diagnosis
is developed by one single organization and is expected
to be homogeneously developed in a model-based approach
with code generation. As we expect the DT to be at least
as long-living as the vehicle itself, we must also expect
considerable software updates of the DT. The model-based
approach provides the benefit of abstracting potential hetero-
geneity on the code level, leaving the generation of clear
interfaces as a requirement. This provides a composition of
heterogeneous implementations at run time. We also expect
modeling techniques to evolve. This poses a challenge with
respect to the composition of models [34], potentially built



with heterogeneous modeling languages and even language
workbenches.

Main Finding: Composition of heterogeneous twin imple-
mentations is not relevant to our application scenario, as our
model-based approach mitigates potential heterogeneity on
code level by generating standardized interfaces and homo-
geneous DT implementations. However, heterogeneous DT
models and DTs developed by different organizations pose
a challenge for composition in the long term.

10. Conflicting constraints and requirements: Conflicting
requirements in the application scenario are not DT-specific,
but rather diagnosis-specific. An example of this is given by
the fact that the DT requires exact data for diagnostics, while
the DT operator wants to send less data to minimize cost. In
terms of conflicting requirements between DTs, all of our DTs
in the project are based on the domain of vehicle diagnostics.

A conflict in requirements arising in the scenario is the data
granularity. Some services require fine-grained data, others
avoid that due to data rate limits for the transfer to the DT
implementation in the cloud. Effect chain analysis requires this
fine-grained data. In our example scenario, we use a technique
employed in vehicle diagnosis: we allow for configuring the
granularity (e.g. frequency) of data at run time by control
commands. During correct operation, only some information is
transmitted. When a reason for a deeper look exists, we trigger
a more fine-grained data transfer until a specified event takes
place.

Main Finding: On DT-level, this challenge is not relevant
to our application scenario, as our different DTs are diagnosis
specific and therefore held to the same constraints and require-
ments.

11. Hierarchical functional abstraction: Vehicle service
diagnosis requires all data provided by the vehicle services,
while the diagnosis of vehicle functions only requires parts of
that. This is a functional abstraction. The ASOA orchestrator
defines the functions and their interconnection to services.
The function services in the vehicle DT reuses them. Vehicle
services in our application scenario are designed to provide
the necessary data and control commands, albeit more than
necessary. Therefore, functional abstraction is not a challenge
in the context of our project.

Main Finding: Hierarchical functional abstraction is already
defined by the ASOA orchestrator and therefore not a relevant
challenge for our DT, since the existing concept can be reused.

12. Composition of interfaces DT2DT and DT2CPS The
challenge of composing DT2DT and DT2CPS interfaces is
mitigated in our application scenario due to standardized com-
munication via SOVD, both for the real-world system. This
holds for both DT2DT communication as well as DT2CPS
communication.

However, standards are sometimes vague and allow for
different implementations, which can cause issues. Therefore,
the vagueness of the standard has to be mitigated by exact
documentation of certain design decisions. Additionally, cer-
tain vehicle services such as the automated driving component
are implemented in Robot Operating System (ROS) instead

of ASOA services (see challenge 4). This also impacts the
composition of interfaces for our vehicle DT, as ROS services
wrapped as ASOA services are not as introspective as regular
ASOA services and do not support traceable effect chains.
Therefore, information on whether a given vehicle service is
a ROS service or an ASOA service has to be included in the
model to ensure that only valid diagnostic queries are offered
by our composed vehicle DT depending on the service kind.

Main Finding: DT2DT and DT2CPS interface composition
is relevant in the context of vehicle services with different
technology stacks and vagueness in the SOVD standard.

13. Interoperability of models and simulation environ-
ments: The interoperability of models and simulation envi-
ronments for multiple vehicles is not a challenge in the given
application scenario. We define the environment of our DTs
ourselves, and having multiple interoperable environments is
not planned. However, on the level of vehicle service DTs
interoperability comes into play. We simulate the behavior of
the services and the interconnections in the DT for analysis.
This is possible because the DTs are all based on the same
family of modeling languages, which can be composed for the
simulation.

Additionally, the nature of a service-oriented architecture
facilitates a simpler composition, as each vehicle service can
be modeled as a single, self-contained component, and their
connections can be controlled during the simulation according
to the orchestrator service of the vehicle DT.

Main Finding: Interoperability of models and simulation
environment is relevant in the context of interoperability
between vehicle service DTs.

14. Integration of graphical user interfaces: The integra-
tion of graphical user interfaces in our DT is a challenge, as
the possibility to diagnose single services in our DT requires a
well-thought-out solution for displaying requested information
in a clear and concise manner. Displaying all information
about every single service at once is clearly the opposite
of that. As information concerning diagnostics is accessed
manually when an issue arises, the graphical interface should
highlight services that logged errors or showed unusual behav-
ior. Additionally, a keyword-based filtering option should show
just the services and service compositions tagged with those
keywords. In the given application scenario a standardized
interface exists towards the user’s devices: the SOVD standard
defines a tree structure for retrieving data and allows to execute
queries on the data. The graphical representation is left to
the devices. Thereby in the given use case, user interface
integration is limited to the integration of multiple SOVD
interfaces.

Main Finding: Integration of graphical user interfaces is
not relevant in our application scenario, as the graphical
representation of information is left to the diagnostic devices
connecting to our DTs via SOVD.

15. Heterogeneous technology-stack and different distri-
bution patterns of DTs: A heterogeneous technology stack
and different distribution of our DT are not an issue in our ap-
plication scenario. We define a homogeneous technology stack



and distribution scenario for the DT in our project. The main
part of the DT exists in the cloud. However, parts of the DT for
pre-processing data might be in-vehicle. The standardization of
communication over SOVD solves possible issues concerning
this distribution by defining respective SOVD queries.

Main Finding: A heterogeneous technology stack is not
an aspect of our application scenario, and therefore not a
challenge. Additionally, standardization of communication
over SOVD mitigates different distribution patterns of our
DTs.

Summary. The composition of vehicle service DTs and the
vehicle DT is the main challenge in the application scenario.
We identified three mitigations: Composition on the model
level, unified interfaces, and uniform code generation.

Composition on the model level is possible because the lan-
guages in use are defined composably. By nature of a service-
oriented architecture, unified interfaces already exist in the
original vehicle, further easing interface construction between
our vehicle service DTs. Unified interfaces via the SOVD
standard are composable due to the data, query, and control
command structure of SOVD. The uniform code generation
helps us with the integration of the DTs via SOVD servers
and interfaces, and uniform diagnosis services in the DTs.

In the application scenario, challenges regarding intellectual
property and privacy and similar qualities are less important.
Therefore, the mitigation of these challenges is not in focus
for our project.

IV. ROADMAP

The next steps in our endeavor to model-based engineering
of DTs for vehicle diagnosis include defining reference models
used for describing the services and building code generators
for diagnosis using SOVD interfaces. We will build respective
models for the application scenario in the research project.
Defining and implementing composition operators for DT
models play an important role in our work. We will use
the work of Broy and Rumpe [35] for the composition of
system engineering models as a reference. We enrich our
architecture models with error classes that define specific
diagnostic operations based on error codes thrown by the
original system, which aids in providing assistance for error
diagnosis. As we analyzed the required diagnostic information
for certain errors, our next step in that regard is generating
suitable diagnosis queries to collect said information. For the
integration on the code level, we will define a uniform code
generator and unified interfaces for the DTs.

We will evaluate the approach on increasingly complex
service composition based on the project’s reference use cases.
Currently, we model the orchestrator DT service based on the
original system implementation for the vehicle DT.

The solutions to the challenges discussed in this paper are
specific to the given use case. It is interesting to investigate
how these specific solutions can contribute to a generic solu-
tion or how they can serve as guidance to find similar solutions
in other use cases, e.g., by describing them as patterns. In

addition, these reference solutions can be connected to the
reference models which describe the services.

V. CONCLUSION

Since automotive functions in SDV are updatable and
upgradable, DTs of SDV must reflect these adaptations. For
not adapting large complex DTs, we develop multiple smaller
DTs of vehicle services, which we integrate into vehicle DTs.
We use MDE to generate DTs from architecture models, data
models, and data constraints. In this paper, we presented the
application scenario of diagnosis for SDV in the research
project AUTOtech.agil and the associated DT engineering
method. We discussed the challenges of DT integration in the
application scenario and measures to mitigate the challenges.

We identified 7 of the challenges of DT integration pre-
sented in [28] as relevant in the given scenario. While 8
challenges do not apply yet, we found that 2 out of the 7
relevant challenges are very relevant and have a large impact
on DT engineering in the application scenario. However,
for all identified challenges, we are able to conceptualize
mitigations. The two most important challenges to overcome
in our application scenario are the horizontal and vertical
integration of DTs. Our mitigation techniques include model-
based system design with composition on the model level,
code generation from the MDE, and standardized interfaces.
In future work, we will develop the model-driven DT generator
for the application scenario for SDV in AUTOtech.agil.
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M. Nolte, L. Eckstein, and S. Kowalewski, “A dynamic service-oriented
software architecture for highly automated vehicles,” in IEEE Intelligent
Transportation Systems Conference (ITSC), 2019.

[3] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer, “Towards model-driven digital twin engineering: Current
opportunities and future challenges,” in Systems Modelling and Manage-
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