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Abstract—Access to data for analysis and control tasks is at
the heart of digitization efforts in the manufacturing industry.
While sophisticated modeling languages like SysML describe
systems and their components, data often ends up in purpose-
built relational and time series databases. To generate value,
information must be retrieved and integrated from multiple
sources. In this paper, we propose an innovative method for
leveraging SysML engineering models and database queries by
combining them in a collaborative low-code web environment.
First, we make heterogeneous databases available via GraphQL,
a state-of-the-art approach for building Web APIs. Then, our
web application enables domain experts to exploit containment
relations in SysML models to connect diverse data sources.
The outcome is an integrated GraphQL API that matches
the engineering model structures by resembling views across
multiple database sources. The discussed approach incorporates
the benefits of data-oriented development and low-code platforms
beyond the business automation domain.

Index Terms—Low-Code, Data Integration, Data-Driven Ap-
plications, Manufacturing, Industry 4.0, Model-Driven Software
Engineering, SysML, Engineering Models

I. INTRODUCTION

The manufacturing industry is investing considerable re-
sources in the digitization of its processes as a means to boost
productivity [1]. The prerequisite to new kinds of analysis
tools driven by machine learning is the availability of data
from all levels of production, starting with machines and
ranging all the way to order and logistics data. In reality,
however, a great diversity of data sources and sinks can be
observed [2]. For example, even data from the same machine
is spread across different databases that were specifically built
for particular purposes. Across domains, such as engineering,
production, and usage, diversity grows. For a comprehensive
analysis, cross-domain data needs to be integrated.

The Systems Modeling Language (SysML) [3] is a general-
purpose modeling language for designing the structure, behav-
ior, requirements, and parametrics of cyber-physical systems.
It is adopted in various domains [4].

While SysML supports the systems engineering process
by leveraging models instead of a traditional document-based
approach, integration with heterogeneous runtime data is often
missing. Thus, there is a gap between the models describing

a system and the (often unstructured) data collected during
runtime. However, sophisticated, highly data-driven analy-
ses and applications require structured data preprocessing.
Therefore, combining these models, explicitly representing
the systems’ (sub-) hierarchies, with data queries can set the
foundation for an integrative view. Such a technique would
enable stakeholders as domain experts without advanced soft-
ware development knowledge to model schema integration
tasks tailored to their specific needs, avoiding the expense of
hiring software specialists. Therefore, we are interested in the
research questions, how data mapping tasks can be facilitated
for domain experts (RQ1) and whether (GraphQL) APIs can
be derived from SysML models (RQ2).

In this paper, we present a low-code approach and tool
support that enables linking engineering models with the data
the modeled systems produce. The aim is to realize database
views as object-oriented GraphQL queries. Our approach
combines Model-Driven Software Engineering (MDSE) [5]
methods with user-friendly functionalities of collaborative
low-code web applications, to account for domain experts
with varying data literacy. We extend the low-code platform
Direwolf Modeler [6] with SysML model support and develop
a service that converts SysML models to working GraphQL
services using the MontiCore language workbench [7]. The
proposed solution demonstrates the feasibility and usability
of the model-driven approach for data integration tasks but
also highlights challenges of possible real-world adoptions,
particularly regarding security.

The outline of this paper is as follows. In Section II, we
present related work in the area of data integration and low-
code model-driven design. We discuss the built-upon technolo-
gies in Section III. In Section IV, we outline our approach and
technical realization. Section V concludes this paper.

II. RELATED WORK

Easy availability and integration of data has multiple ben-
efits in the context of production processes [8]. However, to
analyze and use the data, uniform storage and access to data
must be ensured. Ontology-based data access (OBDA) [9] and
Database Federation [10] are research domains that deal with
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integration tasks. Database federation refers to an architecture
in which a middleware provides uniform access to heteroge-
neous data sources. Applications and developers might access
this data by a single query that gets processed by the manage-
ment system and relayed to the underlying sources. The same
architecture is implemented in newer database management
systems in conjunction with GraphQL. For example, the open-
source tool Hasura1 is able to connect various relational and
non-relational databases in a unified API.

OBDA handles the mapping of objects, representing the
high-level abstraction of a domain of interest, and the data
sources. Clients express queries in terms of an ontology, rather
than a database schema, and the OBDA system translates
them and enables access [9]. Typically, a mapping language
specified by domain experts and database engineers is used.

In this paper, we are working on the synergy between low-
code development approaches [11] and MDSE [12]. This over-
lap shares the use of models and the aim to reduce the amount
of source code required to create a software system [11].
The automated transformation of models into software im-
plementations opens the possibility to integrate information
from other formal descriptions, e.g., engineering models, into
the software. Several MDSE and low-code approaches for
production systems exist, however, they do not cover the
integration of data from different data sources in combination
with engineering models. For instance, one MDSE approach
for digital twins acts upon data generated from cyber-physical
production systems [13]. Other investigations describe the
generation of digital twin cockpits from event logs [14], or
from data structure models [15] supporting parameter manage-
ment in the engineering process of wind turbines. A further
prominent example comes in the context of the EU TYPHON
project2 dealing with heterogeneous database infrastructures
featuring high scalability. It proposes a model-based strategy
incorporating multiple languages to design, deploy, as well as
evolve distributed data stores and derive target store-specific
data access queries from a high-level representation [16].
However, these approaches rely on explicitly crafted data
structure models rather than automatically combining their
data and data sources with existing engineering models.

Most commercial LCDPs are proprietary and closed-source
(e.g., Microsoft PowerApps3 and Make4), which hinders inter-
operability, extensibility, and reusability [17], [18]. We develop
our tool with open standards like SysML and GraphQL to
consider these aspects explicitly. Since the cooperation be-
tween domain experts from engineering and data experts from
computer science is at the heart of our approach, we aim for
a web-based collaborative modeling tool [19] that is easily
accessible by all stakeholders.

1https://hasura.io/
2https://www.typhon-project.org/
3https://powerapps.microsoft.com/
4https://www.make.com

III. BACKGROUND

The main idea behind our approach is to reuse engineering
models to generate views on data stores. In the following,
we first introduce the underlying languages and tools, namely
SysML block diagrams that describes the structure of systems.
We then show GraphQL as an object-oriented and hierarchical
query language, the Direwolf Modeler, and the MontiCore
language workbench.

Block Definition Diagram (BDDs) as specified as part of
the SysML 1.6 specification [3] describe system structures. A
block is a modular unit describing certain system parts and
their relations. A block can comprise a real-world system,
such as a car or a wheel, but also more abstract concepts,
such as a production process or the automotive domain (driver,
passenger, car, baggage, etc.). An Internal Block Diagram
(IBD) captures the internal structure of a block. BDDs define
multiple relations that can be used for different purposes:
Generalization, part association, shared association, reference
association, as well as multi-branch versions of these elements.

GraphQL [20] is a query language for APIs and a server-
side runtime for executing queries using a defined type system.
A GraphQL data schema document contains multiple defini-
tions that are either executable or represent a GraphQL type
system. A service is created by defining types with their fields,
and operations for each field on each type. The operation is
either a query, a mutation, or a subscription. An exemplary
GraphQL API of a service providing general information
of a machine could have a root Query type with a field
named machines that returns a list of machine objects with
fields for the machine’s id, name, and location. To execute
a GraphQL query, the client sends the query string and the
operation (query or mutation) to the server. The server then
executes the query and returns the requested data. GraphQL
is a hierarchical query language, which means that the data is
queried from the root to the leaves of the graph.

There is a large number of tools, frameworks and libraries
available for GraphQL. The commercial open source tool Ha-
sura offers instant real-time GraphQL APIs on existing Post-
greSQL and other databases. It connects to existing databases,
and automatically generates a GraphQL API. Hasura provides
a built-in GraphQL engine, which allows to write custom
GraphQL queries and mutations. It provides functionality for
database federation with Remote Schemas but lacks a built-in
way to link different database sources together in such a way
as underlying engineering models prescribe.

Direwolf Modeler is a modular low-code framework for
creating universal graph-based graphical modeling applica-
tions [6], with an emphasis on visual development, simplicity,
and accessibility. The framework supports various node- and
edge-based metamodels, making it extensible for new graph-
like modeling languages. It enables the simultaneous integra-
tion of multiple modeler instances and, as a collaborative tool,
allows stakeholders to work together in the browser. The user
interface is kept deliberately simple and offers drag-and-drop
functionalities of modeling elements from an element palette.
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Figure 1: From engineering model to generated GraphQL API.

MontiCore is a language workbench for the development
of Domain-Specific Languages (DSLs) [7]. DSLs are defined
via context-free grammars, from which MontiCore gener-
ates software components for model processing such as a
parser, transforming models into an Abstract Syntax Tree
(AST), well-formednes and visitor infrastructures [21], and
a symbol table for models [22]. Additionally, it provides for
template-based code generation that builds upon the Apache
FreeMarker5 template engine. Visitors allow traversing and
operating on the AST data structure of the model. In the
generation process, parameterized templates are converted into
programming language code.

IV. FROM SYSML TO GENERATED GRAPHQL SCHEMA

Our general concept is based on the observation that some
information about structures, which is necessary for further
processing heterogeneous data from different databases, is
available in the engineering models. Therefore, the goal of
our work is the automated elicitation of this information and
the derivation of GraphQL queries for database federation and
further processing of this now structured data. Figure 1 ex-
plains our approach. Production systems (bottom left), which
are described by engineering models (top left), produce data
that are written to various databases. The model features an
industrial conveyor belt (red) with a gripper arm (blue) that
sorts out faulty parts. Belt and gripper store data at different
frequencies to different databases. The general goal of this
work is to reuse these engineering models in a low-code envi-
ronment and integrate access with the heterogeneous databases
via the GraphQL API (mid). The tooling automatically derives
queries to provide the corresponding data in a structured way
for integrated analyses (right).

Transformation Approach: In this work, we mainly refer
to engineering models of SysML. More precisely, we con-
centrate on SysML BDDs, describing system structures, and
forming the modeling baseline of our approach. We build
on the modeled system components and their relationships

5https://freemarker.apache.org/

for extracting linking information of the underlying runtime
data of a corresponding machine. For instance, an association
between two blocks represents a data relation between the
value properties, i.e., the data sources. In our modeling tool,
domain experts establish the connection between SysML BDD
blocks and GraphQL types by providing tagging information.
Thus, each block in the model is augmented with additional
data source details, allowing for different data sources for
distinct elements. For each property and for the block name, a
tag specifies a source (i.e., a table in one of the incorporated
databases). The tables are then joined via the information
provided by the association. We define two properties for
each association, joinFrom and joinTo. A domain expert
defines how data is joined together, similar to how foreign key
relations in a traditional SQL database are designed. Then, the
final (integrated) GraphQL schema is generated. For instance,
a table resource could contain all machine data, i.e., the name
and cost per hour of all machines. The root query name for
this table is then “resource”, while the machine data are the
fields of that query. An example GraphQL query would thus
be {resource {name cost_per_hour}}.

Deriving GraphQL schemas from the augmented SysML
BDDs requires an unambiguous mapping of the individual
diagram elements. Table I provides an overview of this trans-
lation between concepts of SysML BDDs into GraphQL. Every
SysML block b generates a new GraphQL schema type with
the name of the block (row 0 in Table I). Analogously, every
interface and enumeration has a corresponding interface or
enumeration (rows 1 & 5). If a block is associated with an
interface, then the GraphQL type also implements the interface
(row 2). For every attribute, or association with cardinality 1,
we create a new GraphQL field with the name and type of
the attribute, or the object type in case of an association
(row 3). For associations with cardinality higher than 1,
we generate a field with the association name and the type
wrapped in square brackets (row 4), indicating a collection-
like access schema. An enumeration literal is converted into a
corresponding GraphQL enumeration literal pendant (row 6).

https://freemarker.apache.org/


We create a new GraphQL scalar type if we encounter a field
type that is not a scalar type but should be one (row 7).
For associations that expect at least one result, we add an
exclamation mark representing required parameters (row 8).
Furthermore, BDDs support multiple other association types
that we do not specify explicitly. For example, generalization
can be included by adding the properties of the generalized
block to the specialized block. Similarly, the part association
can be included by specifying that all properties of a part are
inserted into the block it is part of. No separate type should
be created for a part either. As SysML originated as a UML
profile, this method directly resembles related work that maps
UML and IFML models to GraphQL [23].

Table I: Mapping from SysML BDD elements to GraphQL
schema components.

# BDD Metaclass GraphQL schema
0 b : Block type b.name {...}
1 i : Interface interface i.name {...}
2 b : Block.implements → i : «Interface » type c.name implements i.name {...}
3 a : {attrs., assocs. max. mult. 1} a.name : a.type (field)
4 as : assocs. max. mult.>1 as.name : [as.type] (field)
5 e : «Enumeration » enum e.name {...}
6 el : Enum Literal el.name (enum value)
7 t : Type not in GraphQL scalar types scalar t.name
8 f : structural feature min mult. 1 f.name : f.type! (type marker)

Technical Realization: We use the open-source tool Hasura
to make data sources available as GraphQL APIs. It offers data
integration functionalities for heterogeneous data sources via
remote schemas that need to be configured via textual config
files. Based on the integrated APIs, our low-code tool allows
for a demand-driven composition of queries, automatically
derived by extracting the interrelations within the SysML
models. Using the customization possibilities of the Direwolf
Modeler, we realized an extension incorporating SysML BDDs
with augmentation possibilities via attachable tags. Thus, each
block includes a title, an attributes property contain-
ing all fields of a block, and a tags property containing all
the additional tags that were added to an element. Users can
add attributes by specifying a string that consists of the name
of the attribute, followed by a colon and lastly the type of the
attribute (e.g., name: String). Furthermore, associations
are available in the BDD modeling palette that can be applied
by dragging from one block to another. Each association has
attributes, tags, and the properties cardinality_origin,
cardinality_target, JoinFrom, and JoinTo. The
cardinality properties express the relationship’s multiplicities
(at both ends) between blocks based on the direction of
the edge. In our model, associations are always directed,
to get unambiguous schema mappings with corresponding
JoinFrom and JoinTo properties. Therefore, to create reciprocal
references, we require two separate associations. To further
process the data access enriched models, we use Direwolf’s
capability to convert different kinds of models into a JSON
representation that we employ in the next step.

Extracting and Processing Model Information Generat-
ing GraphQL schemas and servers from the augmented BDDs
modeled in Direwolf requires further processing of the models,

exported as JSON artifacts. We use the MontiCore JSON
parser to handle these JSON representations and create an
AST. The parser dissects the JSON document into a data
structure adhering to the JSON grammar representation so that
each entry has a corresponding type, such as JSONArray,
JSONProperty, or JSONObject.

After deriving the AST, we need to collect the information
relevant to the generation process. For this purpose, we employ
a visitor, which MontiCore automatically provides for each
language [7], an extended realization of the general visitor
pattern [24]. By design of Direwolfs export, we have two
arrays within the input JSON document, one for all nodes
and one for all edges of the graph induced by the original
SysML model. Here, we make use of MontiCore’s possibility
to customize the overall traversal strategy to only shallowly
traverse the AST as we are only interested in the array’s nodes
and edges. Thus, the visitor operates on the nodes of the JSON
AST and collects a list of Java node objects and the edges
into a list of edge objects. The visitor returns the sub-AST
that results from its execution. On the node array, we collect
the properties of that node into the node object. On the edge
array, we proceed analogously.

GraphQL Schema Generation. To generate the GraphQL
schema, based on the extracted features from the JSON AST,
we add fields as attributes to each node if it has an outgoing
edge to another node, as shown in Table I. The name of this
field is the association name and the type is the name of
the target node. Furthermore, we annotate the new field with
square brackets if the cardinality for the target is greater than
one. Additionally, a root query is created for every node as the
access point for the respective data source. A query defines the
entry point for all queries of the generated GraphQL schema.
Instead, the root queries are generated for every node to query
all fields (including associations) from one data source.

GraphQL Server Generation. We generate a GraphQL
server in JavaScript that runs on the open-source Apollo
Server6. We generate an index.js, and, for every GraphQL
type, resolver.js and datasource.js files. A data-
source class encapsulates fetching data from particular data
sources via HTTP. Functionalities of datasource files are
available to the resolver as APIs that have the node’s name.
The topmost resolvers send API calls to all datasources.
These calls are cached for scalability reasons. The JoinFrom
and JoinTo properties of the nodes are used to match the
result tables with the respecting fields of our GraphQL type
system. Finally, the index file contains functions to import
the corresponding datasource files, create an Apollo instance,
instantiating the resolvers, and starting the server.

V. CONCLUSION AND FUTURE WORK

The digitization of industry relies on making large amounts
of data available for advanced analysis and control tasks.
However, these data treasures often sit in heterogeneous
databases that have been set up for specific purposes, making

6https://www.apollographql.com/docs/apollo-server/
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integration difficult. For instance, Digital Shadows, which
form a purposeful view of an observed object or process,
require a specific focus and by selection and aggregation of
data that may originate from heterogeneous sources [25]. Our
proposed method of combining SysML engineering models
and database queries in a collaborative web environment relies
on domain experts working together with data experts. We
benefit from parts-of hierarchies inherent to SysML models,
resulting in an integrated GraphQL schema matching the engi-
neering model structures. By extending Direwolf Modeler with
SysML BDDs, we facilitate data mapping tasks for domain
experts, thus answering RQ1. Furthermore, we developed a
prototype for generating a GraphQL server with the MontiCore
language workbench and its text generating capabilities for
creating GraphQL schemas, answering RQ2. In comparison
to proprietary LCDPs, every part of our software can be
swapped for another technology stack. A preliminary technical
evaluation exhibits a low overhead with a linear increase of
the response time with each added node. The generation time
is almost unaffected by the number of nodes.

Our prototype shows a number of limitations. E.g, the
generated resolver exhibits overfetching issues, i.e., data rows
are fetched multiple times, which becomes critical with an
increasing number of source tables. Real-world aspects that
we considered out of scope include the integration of more
complex and real-time time series data sources. Database
federation, in general, has the risk of compromising huge
amounts of data if a security vulnerability is exploited.

In future work, we want to research how additional
GraphQL operation types, such as mutations and subscriptions,
could be combined with our solution. Moreover, our approach
can be used to connect digital twins with the different data
sources from their cyber-physical counterpart in low code
development platforms [26]. Our tool connects modeling and
domain experts in a visual, collaborative interface requiring
a usability study. To test our prototype in real-world applica-
tions, we are working on scalability measures by employing
caching and batching of queries. Finally, usability evaluations
with domain experts need to be performed. Overall, we
see great potential for collaborative LCDPs involving both
modeling and domain experts to tackle data integration and
analytics tasks common to digitization endeavours.
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