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Abstract—Sustainable software systems aim to create resource-
efficient software products and reduce the carbon impact of
applications. Current approaches for sustainability assessment
of software are either only focused on their operation or rely
on methods in their engineering. More holistic approaches for
sustainable software system spanning are missing. Thus, we are
interested in the engineering of sustainable software systems
together with the monitoring of their sustainability goals over
their whole lifetime. Within this paper, we suggest using digital
twins to accompany software systems in all life cycle phases
with a specific focus on using model-driven engineering methods
for the creation of applications. We can generate accompanying
digital twins which share relevant models and data with the actual
system and provide services for the assessment of sustainability
indicators. In the long run, this provides us with better assessment
options for software systems.

Index Terms—Model-Driven Engineering, Digital Twins, Sus-
tainable Software Systems

I. INTRODUCTION

When technical developments are considered in terms of
their social, economic, and environmental aspects of sustain-
ability [[1], they should have a positive impact on our world.
To assess this impact, the United Nations have developed 17
sustainable development goals (SDGs) with 169 associated
targets [2]] we should achieve. Assessing software systems [3|]
based on these targets requires manual effort as one has to
evaluate various aspects and take data from heterogeneous data
sources into account. Up to now, sustainability assessment of
software systems is often a manual task. One has to manually
assess different sustainability criteria [4], e.g., with scenario-
based techniques [5]], and continuously update the assessment
in case of changes in the software.

Our aim is to investigate how to create sustainable software
systems with Model-Driven Engineering (MDE) methods and
monitor the sustainability goals of these synthesized systems.

We suggest using Digital Twins (DTs) to accompany soft-
ware systems in all life cycle phases to reach this goal.
Up to now, digital twins are mainly used to accompany
Cyber-Physical Systems (CPSs), e.g., airplanes [6], cars [[7]],
wind turbines [8]], machine elements [9], injection molding
machines [10], or buildings [[11]. The experiences made at DT
engineering for CPSs [12] can be transferred to DTs for soft-
ware systems created using MDE methods. We discuss the life
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cycle of software systems, relevant aspects for sustainability
assessment, and how MDE methods support the engineering
of their DTs.

The paper is structured the following: provides
foundations and related work. presents our vision
on how to use digital twins for sustainability assessment and
discusses it, and the last section concludes.

II. FOUNDATIONS AND RELATED WORK

Whereas the General Assembly of the United Nations
provides us with concrete 17 SDGs with 169 associated
targets [2]], translating these goals to software systems is
still a challenge. Penzenstadler [13] defines sustainability “as
preserving the function of a system over a defined time span”
requiring to define the three variables system, function, and
time. These can be defined in software engineering from four
perspectives:

o Development processes: This includes software engineer-
ing processes with responsible use of ecological, human,
and financial resources.

o Software maintenance: This includes the maintenance and
evolvement of a software system with minimized environ-
mental impact, well-managed knowledge, and sufficient
economic balance.

o System production: In this perspective, the software is
considered a concrete product including its hardware and
the resources needed for production.

o System usage: Here, we take the entire period of use of
the software and its operational environment into account.

There exists a large variety of metrics to assess green
software [14]. Venters et al. [3|] suggest considering soft-
ware sustainability as a non-functional requirement. Measuring
the extensibility, interoperability, maintainability, portability,
reusability, scalability, and usability of a system enables us
to make statements about its sustainability. This allows an-
alyzing, evaluating, and reasoning about sustainability at an
architectural level [[15]. Kern et al. [4] describe causal chains
from software products to their impacts on natural resources,
e.g., energy. Design choices in software engineering, e.g.,
which programming language to use, compiler optimization,
and implementation choices, have an influence on the energy
efficiency of programs [16].

Digital Twins. We suggest using DT's to accompany software
systems in all life cycle phases to support their sustainability



goals. Thus, we need to understand what constitutes a digital
twin. In our understanding, a digital twin of a system consists
of a set of models of the system and a set of digital shadows,
both of which are purposefully updated on a regular basis,
and provides a set of services to use both purposefully with
respect to the original system. The digital twin interacts with
the original system by providing useful information about the
system’s context and sending it control commands. []_-]Models
include several types in different languages, e.g., data, process,
event, system, simulation, optimization, or 3D models. Digital
Shadows (DSs) [17] are contextual data, and their aggregation
and abstraction. In this way, we can manage the large amount
of data that is captured about systems in real life by reducing
it to the data we need for a specific purpose. Services provide
the main DT functionalities and operate on models and data.
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Fig. 1. MDE supports the engineering of different parts of a digital twin

gives an overview of where MDE can be used
to develop a DT. Using MDE, we can generate software
parts of the original system such as the control software of
a CPS. We can generate connections between services of the
DT and the original system, e.g., connect a DT visualization
service with IoT devices as a part of the original system [/18].
We can generate data structures as well as the connection to
get data from these data sources [[19]. We can apply model-
to-model transformations between models to be used in a
DT, e.g., extract data models from SysML models, functional
models from STEP models [20]], or GUI models from BPMN
models [21]. Moreover, we can synthesize code for (parts of)
services, e.g., for visualization [10] or connections to process
mining services [22].

To the best of our knowledge, there exists no research
suggesting to use DTs for supporting sustainable software
systems. Recent literature suggests the use of DTs to assess
sustainability targets especially for buildings, e.g., educa-
tional buildings [11f], railway station buildings [23]], or smart

'We published the first version of this definition in [10] but updated it
to version 2.1 after discussions on a Dagstuhl seminar on DTs and further
meetings, such as Modellierung’23.

campuses [24]. Other research relies on the simulation and
optimization services of DTs and investigates how to improve
the sustainability performance of whole value chains, e.g., in
production [25], [26]], or suggest life cycle sustainability as-
sessment in the clothing industry [27]. The main functionalities
DTs provide for sustainability assessment are to monitor, cal-
culate, and visualize sustainability indicators, and simulate and
forecast these indicators based on historic information. The
services DTs provide assist with responsible consumption and
use of resources in relation to created products. They enable
the simulation of different variants of DTs before building the
physical one to improve resource efficiency. They facilitate the
optimization of production processes towards waste reduction
and energy saving and are allowing responsible production.
Moreover, DTs provide services for self-adaptability to im-
prove resource efficiency. Clearly, these services can also help
to support sustainability goals of software systems.

III. A VISION TOWARDS DIGITAL TWINS FOR
SUSTAINABLE SOFTWARE SYSTEMS

Our vision is that a DT accompanies software systems
during their whole life cycle to enable the sustainability
assessment of a software system (see [Figure 2)). To discuss
sustainability and DTs requires taking four perspectives [[13]:
To design and engineer software in a sustainable way, to
produce a software system in a sustainable way, to use the
software in a sustainable way, and to maintain up to replace
or reuse software in a sustainable way. By using a DT
accompanying the whole life cycle of a software system, all
four perspectives could be combined.

Software engineering produces a large amount of data,
either directly as run-time data or indirectly as information
gathered about the system. The DT contains models that it
mostly shares with the software system. Engineering models
from the design and requirements phase do not only describe
the software system but also contain valuable information
for the DT at its run-time, e.g., for analysis purposes, or
for its own development, e.g., to describe a shared data
structure [28]. Run-time models across the life cycle can be
utilized to analyze current or planned behavior. The digital
twin’s digital shadows aggregate potentially large data from
the software system, about it, or within its context and describe
the information relevant for targeted purposes. The different
services in a DT utilize the DSs to analyze, report, interact
with, and intervene in the software system.

In the following, we examine the different life cycle phases,
namely Design, Implementation/ Generation, Operation, and
End-of-Life (see and elaborate on sustainable influ-
ences of the DT on the software system.

Design. When a system is designed using MDE, several
modeling languages are used [29]: to build a data model of
the domain, e.g., via UML class diagrams, to model behavior
of single components, e.g., with statecharts or the BPMN, or
to describe the interplay of multiple components, e.g., using an
architecture description language or SysML. Often desirable
or forbidden situations are modeled with exemplary methods,
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Fig. 2. Different variants of digital twins of software systems

like object or sequence diagrams. During this phase of the
software life cycle, the models them-self can be considered
data of the DT and can be used to provide services to measure
and improve the sustainability of the software system.

By adding the system requirements to the DT, automatic
requirements tracing techniques, e.g., [30], can be used to
ensure that all requirements are met before deployment. This
increases correctness and availability. Additionally, if every
part of a system can be traced back to its original requirement,
unneeded components can be identified. If the sustainability
goals of the system are expressed as non-functional require-
ments, the DT can provide a service to monitor compliance
during the whole life cycle by comparing with measurements
added as a digital shadow in the later phases.

By analyzing the architecture models of the system in
several situations the consumed resources can be estimated
and optimized. If the usage is expected to fluctuate during
the operation phase, several architectures can be simulated
and compared with regard to horizontal scaling, favoring
low baseline resource consumption and appropriate use of
load balancing techniques. Further, scenario-based reliability
analysis of the architecture, e.g., [31]], can be used to estimate
the impact of failures on the availability of the software
system. These estimates can then be used to reach the desired
availability with optimal resource usage by reducing excessive
redundantly deployed components and services.

If the behavior of system components is modeled, e.g.,
with sequence diagrams [32], the resource usage can also
be estimated with scenario-based analysis, via heuristics or
simulation. Similarly to the analysis of the architecture models,
the most sustainable alternative can be chosen from multiple
behavior models meeting the requirements. The resource-
intensive parts of the system can also be identified and
optimized early on in the development. All of the sustainability
estimates made in the design phase can also be considered a
digital shadow of the system and can be used in later life cycle
stages for further optimization.

Implementation/ Generation. In the implementation
phase, hand-written code is added to the generated code.
Automated tests are executed on (parts of) the system, during
which logs of execution sequences and resource usage can be
collected. Both, the logs and source files, can be considered in
DSs of the system. Thus, the meta-model of the used general-
purpose programming language(s) and a meta-model for the
run time logs of the system can be added to the DT model.

Model-based testing techniques can reuse the exemplary

models from the digital shadow of the design phase to ensure
that the implementation conforms to the specification. For
this purpose, the logs recorded during the execution of tests
can be analyzed to confirm that no forbidden messages, as
defined in sequence diagrams, are sent between components.
Since the conformance to these parts of the specification does
not need to be checked by additional handwritten tests, fewer
development resources are used. Additionally, inconsistencies
are found early in the development process, which reduces the
resources wasted during the operation of a faulty system, as
well as the development resources used to fix bugs.

By analyzing the resource usage logged during test execu-
tion, resource-intensive sections of the code can be identified
and optimized before the system is experiencing most of
its usage in the operation phase. The resource consumption
estimates contained in the DT from the design phase can be
compared to the resource usage under testing conditions. The
results can be used to grasp the quality of the used analysis
techniques and improve used heuristics. This improves the
overall process in later development iterations if the system
is built using agile methods or for further projects.

The DT should not only be used to develop sustainable
software but also to develop software sustainably. Process
mining can be used to discover a process model from log
data [33[]. By recording log data of all development tools
and discovering the underlying process model using process
mining, several contributions to the sustainability of a system
can be made. The process model can be used to identify
the least sustainable parts of the development process, e.g.,
by calculating the overall resource usage for each step. This
allows applying optimizations where they have the highest
impact. Additionally, bottlenecks in the process can be found
and the tooling can be adapted to address these shortcomings,
decreasing the idle time of project members.

Artifacts are in complicated relationships in most software
projects, like inheritance structures in object-oriented code,
and in projects following MDE in particular, since models
are used for multiple different purposes. They can either be
used for analysis, in model-to-model transformation or fed into
a code generator, which uses templates to synthesize code.
[34]] describes an artifact model that can be used to analyze
the hierarchical dependencies between all artifacts in MDE
projects. These dependencies in the DSs of the design and
implementation phase can be used to make computationally
expensive operations incremental. If none of the analysis
inputs, like conformance checking between an object diagram



and a class diagram, changed since the last execution, the new
calculation is not needed reducing resource usage. The same
principle applies to other resource-intensive parts of the MDE
process, like code generation, automatic testing, and formal
verification with automated theorem provers.

If the system contains components realized with machine
learning (ML) techniques, training ML models is also resource
intensive. [35]] describe an analysis technique on model-based
ML systems enabling the reuse of pre-trained ML models to
avoid costly retraining of networks.

Operation. During the operation phase, the original soft-
ware system produces the most amount of data. This run-time
data can be logs (on different detail levels), status information,
or service requests. This is where the DT has the most
noticeable impact. It is connected to the original system and
is provided by or gathering its data. It monitors the system’s
status and reports to responsible departments. Additionally,
the DT is provided context information not only about the
original system but also about all surroundings which allows
it to gather more holistic digital shadows of the system. An
important requirement for this is the assignability of data to
individual components or services which makes analyses in
digital shadows more expressive. As is the nature of the DT,
it can also interact with and intervene in the software system at
run-time. It uses the information, e.g., to optimize parameters,
alter the system configuration, or organize resources. There
exist already papers on how to develop DTs for physical
systems in a model-driven way [18]], [36]. For software at
operation time, the DT can be generated in a similar way.

One key concept of the DT during operation is real-time
monitoring [37]]. To support the system’s sustainable operation,
startup, and shutdown, the DT performs purposeful analyses
of the current behavior and detects execution gaps. Those can
be identified from previously modeled desired behavior, e.g.,
sequence diagrams specifying single operations, or using pro-
cess models. These undesired situations contribute to higher
energy consumption and might have a direct impact on more
waste influenced by the software system [38]].

The DT can be equipped with default services which, e.g,
identify uncommon peaks in energy consumption compared to
the current workload or compared to predefined energy goals.
These services need data from the software and the hardware
it is running on. With such a default set of services, the DT
contains well-studied monitoring tools which can be applied
to different systems in a similar way. Architecture models
from the design phase allow this analysis to be particularly
targeted and narrowed down to specific components. With
generated GUI components from engineering models which
track components’ behavior or energy consumption, the in-
formation gets more human-processable. After the successful
identification of any need to act, the DT is capable of reporting
and supporting the software system in resolving the execution
gaps. These actions are specifically adapted to the software
system and require thoughtful design and implementation
itself. Optimizing the system includes allocating resources
adjusted to the current needs, reconfiguring system parameters

[36], or cleanups to guarantee durability. Actions in the code
base can only be done by the corresponding development team,
but the DT redeploys it with matching parameters. Storing
all digital shadows with their contextual data and aggregated
information allows analyses in the last life cycle phase.

End-of-life. When the software system reaches its final
life cycle phase and has stopped operation, it either has
successfully fulfilled its purpose, needs major re-engineering,
or gets replaced by another system. Given the rapid pace of
technological progress, software as a whole quickly becomes
outdated without major updates. These might reach deep
into the software’s core design decisions. Nonetheless, a few
components might have performed well and are worth be
carried on to the next generation.

In this life cycle phase, sustainable aspects are primarily in
reuse and data storage. Disposal is not a big concern, unlike
physical systems. The DT does not collect new data but is
now able to combine information from all previous life cycle
phases. This helps engineers determine which component can
be reused and how it can be embedded in their new system, or
which data is still relevant to keep. Models from design and
implementation/generation specify the component’s interface,
how it functions, and what role it takes in an architecture.
Comparing the planned behavior in the design phase with
its actual behavior from operation with methods like process
conformance checking [39] together with analyses on error
logs allows the DT to draw conclusions about the component’s
relevance and reliability in future software systems. If a
component meets desired energy goals can be determined with
logged energy consumption. Whether a component is easy to
integrate can be derived from the implementation/generation
phase by analyzing test reports regarding the success rate
when using this component. With this information about the
software system over previous life cycle phases, development
teams gain a deeper insight and can engineer more reliable,
maintainable, and energy-efficient software systems.

IV. CONCLUSION

Within this paper, we have introduced the use of DTs of
software systems to support the sustainability assessment of
applications. We have discussed the life cycle of the actual
object software system and shown what models, data, and
services are relevant in the different phases. We discuss the
engineering process, production, maintenance, and usage of
the DT from a sustainability perspective, as DTs are software
systems themselves. Questions one might pose are if the
engineering of an additional software system, the DT, for
a software system is sustainable. As the sustainability DT
only collects data and models for its specific purpose, we
expect that the DT will be of a much smaller size than the
original system and will not scale up with the original system.
However, this question can only be answered if one has already
created several sustainability DTs. Another question is why
the original system needs a DT at all as it is again software
and the original system could take over its tasks. To ensure
the separation of interests, the software system should be



developed according to its requirements. This allows different
domain experts to develop the goals more efficiently, reuse
DT components for similar purposes in different software
systems, and targeted generation of DT components from
models. Furthermore, the DT exists and evolves along with the
software system’s life cycle. On the one hand, this allows the
DT already operating while the software is still in development
(design, implementation/generation) or not operating anymore
(end-of-life). The first requires the use of MDE to quickly
develop a running DT. On the other hand, the separation allows
the DT to connect the different life cycle phases [12], [40]
enabling more holistic analyses.
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